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Abstract —The reconfigurable mesh consists of an array of processors interconnected by a reconfigurable bus system. The bus
system can be used to dynamically obtain various interconnection patterns among the processors. Recently, this model has
attracted a lot of attention. In this paper, we show O(1) time solutions to the following computational geometry problems on the
reconfigurable mesh: all-pairs nearest neighbors, convex hull, triangulation, two-dimensional maxima, two-set dominance counting,
and smallest enclosing box. All these solutions accept N planar points as input and employ an N � N reconfigurable mesh. The basic
scheme employed in our implementations is to recursively find an O(1) time solution. The number of recursion levels and the size of
the subproblems at each level of recursion are optimized such that the problem decomposition and the solution to the problem can
be obtained in constant time. As a result, we have developed some efficient merge techniques to combine the solutions for
subproblems on the reconfigurable mesh. These techniques exploit reconfigurability in nontrivial ways leading to constant time
solutions using optimal size of the mesh.

——————————   ✦   ——————————

1 INTRODUCTION

HE reconfigurable mesh [24] is a variant of the mesh
connected computer model in which the shape of the

buses can be altered to suit the need of the programs in exe-
cution. It shares some basic features with the CHiP com-
puter [41], mesh connected computers augmented with
broadcast buses [35], the bus automaton [39], the polymor-
phic-torus network [19], and the coterie network in the lat-
est version of the Content Addressable Array Parallel Proc-
essor (CAAPP) [50]. A reconfigurable mesh has been built
by NEC which has 512 PEs [18]. Researchers at IBM have
implemented a reconfigurable mesh called polymorphic-
torus [19]. An optical implementation of the reconfigurable
mesh is suggested by Ben-Asher and Schuster [2]. This im-
plementation employs Electrically controlled Directional
Coupler (EDC) as a switch and optical fibers as buses.

On the theoretical side, many efficient parallel algo-
rithms have been developed for the reconfigurable mesh.
These include algorithms for fundamental data movement
operations [24], [27], sorting [10], [1], [29], [22], [46], selec-
tion [7], [9], multiplication [13], division [34], histogram-
ming [12], [17], [32], and graph problems [27], [47].

In this paper, we develop constant time algorithms for
computational geometry problems including convex hull, k-
dimensional maxima, two-set dominance counting, smallest

enclosing box, all-pairs nearest neighbor, and triangulation,
all on a reconfigurable mesh of size N � N. Preliminary ver-
sions of this paper have appeared in [11], [30], [31]. Previ-
ously, there has been a constant time algorithm for convex
hull on a reconfigurable mesh [38]. The algorithm is flawed.
We show a counter example and present a corrected and
more general solution in Section 3.1.

The minimal size of the reconfigurable mesh needed to
solve the computational geometry problems we consider in
this paper in constant time is :(N � N), where N is the num-
ber of input points. To achieve these time and processor
bounds, we use the following strategy in our algorithms:

1) Divide a given problem of size N into subproblems of
size N1−e, where 0 < e < 1. Solve each subproblem in
constant time, using a mesh of size at most N � N1−e.

2) Merge the solutions to the subproblems in constant
time using an N � N mesh.

Our main contributions are in identifying the subprob-
lems and in devising techniques on the reconfigurable mesh
to solve the subproblems in constant time and to perform
the merge operations in constant time. The rest of the paper
is organized as follows. In Section 2, we describe the recon-
figurable mesh model used in this paper and several vari-
ants of it. Also, prior work in performing several basic op-
erations on the reconfigurable mesh is identified. Constant
time algorithms for computational geometry are developed
in Section 3 and Section 4 concludes the paper.

2 RECONFIGURABLE MESH MODEL

For the sake of completeness, we briefly define the recon-
figurable mesh model and some variants of it.

2.1 Reconfigurable Mesh
The reconfigurable mesh architecture used in this paper is
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based on the architecture defined in [24]. An N � N recon-
figurable mesh consists of an N � N array of PEs
(processors) connected to a grid-shaped reconfigurable
broadcast bus. A 4 � 4 reconfigurable mesh is shown in
Fig. 1. Each PE has locally controllable bus switches. Inter-
nal connection among the four ports (N, E, W, and S) of a
PE can be configured during the execution of algorithms.
Note that there are 15 allowed connection patterns (see
Fig. 2). For example, {SW, EN} represents the configuration
in which S (South) port is connected to W (West) port while
N (North) port is connected to E (East) port. Each bit of the
bus can carry one of 1-signal or 0-signal at any time. The
switches allow the broadcast bus to be divided into sub-
buses, providing smaller reconfigurable meshes. For a given
set of switch settings, a subbus is a maximal connected sub-
set of PEs. Other than the buses and the switches, the recon-
figurable mesh is similar to the standard two-dimensional
Mesh Connected Computer (2-MCC). In this paper, we use
the exclusive write model which allows only one PE to
broadcast to a subbus shared by multiple PEs at any given
time. We assume that the value broadcast consists of O(log N)
bits and a broadcast takes 4(1) time. Also, we assume that
each PE can perform an arithmetic and logic operation on
O(1) words in unit time. The size of the local storage in each
PE is O(1) words, where each word is 4(log N) bits.

Fig. 1. 4 � 4 reconfigurable mesh.

Fig. 2. Patterns of internal connections between the four I/O ports of a PE.

2.2 Related Models
After the definition of the reconfigurable mesh in [24], other
models have been defined [1], [29], [46]. These models re-
strict the allowed connection patterns. The most general
and powerful model among these is the PARBS model [46]
which allows any combination of four-port connections in
each PE. Notice that the PARBS model is the same as our
model of Section 2.1.

The CAAPP [50] and RMESH [24] architectures appear
to be quite similar. So, we shall describe the RMESH only.
In this model, we have a bus grid with an N � N arrange-
ment of processors at the grid points (see Fig. 3 for a 4 � 4
RMESH). Each grid segment has a switch on it which en-
ables one to break the bus, if desired, at that point. When all
the switches are closed, all N2 processors are connected by
the grid bus. The switches around a processor can be set by
using local information. If all processors disconnect the
switch on their north, then we obtain row buses. Column
buses are obtained by having each processor disconnect the
switch on its east. The set of connection patterns supported
by this model is shown in Fig. 4. Notice that in the RMESH
model it is not possible to simultaneously have N disjoint
row buses and N disjoint column buses that, respectively,
span the width and height of the RMESH. It is assumed that
processors on the same bus can communicate in O(1) time.
RMESH algorithms for fundamental data movement op-
erations and image processing problems can be found in
[7], [15], [17], [24], [25], [27], [29], [38].

Fig. 3. 4 � 4 RMESH.

The polymorphic torus architecture [19] is identical to
the PARBS except that the rows and columns of the under-
lying mesh wrap around (Fig. 5). A variant of the reconfig-
urable mesh model has been studied in [20], [21] for arith-
metic operations. The reconfigurable multiple bus ma-
chine (RMBM) has been studied in [43], [44], [45]. In this
model, the reconfiguration hardware is separated from
the processing elements.

In [1], the Reconfigurable Network (RN) model is intro-
duced and several algorithms for this model are derived
under the mesh restriction. This model has been denoted as
MRN in [29] and LRN in [3]. In the MRN/LRN model, the
number of possible connection patterns in each PE is 10.
Fig. 6 shows the allowed connection patterns. A bit model
of the reconfigurable mesh has been defined in [14].
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Fig. 4. Connection patterns allowed in RMESH.

Fig. 5. 4 � 4 polymorphic torus.

Fig. 6. Connection patterns allowed in MRN.

Throughout this paper, the term reconfigurable mesh re-
fers to the model defined in Section 2.1.

2.3 Some Basic Operations
Several operations can be performed quickly on the recon-
figurable mesh [1], [7], [9], [10], [12], [13], [15], [16], [17],

[28], [32], [47]. We briefly outline the results used in our
algorithms in Section 3.

Given a 0/1 sequence, bj, 0 � j < N, the prefix-and compu-
tation is to compute, for each i, 0 � i < N, b0 » b1 » � bi.
Adapting the techniques in [27], it is easy to show:

LEMMA 1. Given a 0/1 sequence of length N in the row of an 1 � N
reconfigurable mesh, the prefix-and of the elements in the
sequence can be computed in O(1) time.

LEMMA 2 [27]. Given a quadratonic sequence of length N in the
row of an 1 � N reconfigurable mesh, the maximum and
minimum of the elements in the sequence can be computed
in O(1) time.

The next operation considers computing the maximum
of N log N -bit numbers.

LEMMA 3 [27]. Given a set of N log N-bit numbers in a row of an
N � N reconfigurable mesh, the maximum of the elements
in the set can be computed in O(1) time.

Given a 0/1 sequence, bj, 0 � j < N, the prefix modular k

computation is to compute, for each j, ( ) modb kww

j

=Â 0
.

LEMMA 2 [12]. Given a 0/1 sequence of length N in a row, the
prefix modular k computation can be performed in O(1)
time on a (k + 1) � 2N reconfigurable mesh.

Note that the above result is not true for the RMESH
model.

Given N k-bit binary numbers, 1 � k � N, the addition
problem is to add these numbers into a (k + log N)-bit binary
number.

LEMMA 5 [10]. Given N k-bit binary numbers, 1 � k � N, these
numbers can be added in O(1) time on an N � Nk recon-
figurable mesh.

Given N log N-bit numbers, the problem of sorting these
numbers has been considered by several authors.

LEMMA 6 [10], [22], [29], [1]. Given N numbers in a row, these
numbers can be sorted in O(1) time using an N � N recon-
figurable mesh.

3 CONSTANT TIME GEOMETRY ALGORITHMS

In this section, we develop O(1) time solutions to several
problems on N planar points using an N � N reconfigurable
mesh. We begin with computing the convex hull of N planar
points.

3.1 Convex Hull
Given a set S of N planar points, the convex hull problem is to
find the smallest convex polygon containing all the N points
of S. Let CH(S) denote the convex hull of S. We solve the gen-
eral problem of prefix computation of convex hulls of disjoint
subsets of S. S is partitioned into N  disjoint subsets, Sj,
0 £ <j N  of size N  using the x coordinates of the points
as keys. The problem is to compute the convex hull of the
union of the first j subsets, for each j, 0 £ <j N . Clearly,
the solution to this problem includes the solution to the con-
vex hull problem on S. Let E Sj( )¢  denote the set of extreme
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points of the convex hull of Sj ¢ . Thus, we compute

E Sj
j

j( )U ¢= ¢0  for each j, 0 £ <j N . The coordinates of N

planar points are given as input and the outputs are the
coordinates of the points in E Sj

j
j( )U ¢= ¢0 , for 0 £ <j N .

THEOREM 1. Given N points stored in a row of the reconfigurable
mesh, the prefix computation of convex hulls can be per-
formed in O(1) time on an N � N reconfigurable mesh.

PROOF. First, the N points are sorted using their x coordi-
nates as keys. The sorted list is partitioned into N

disjoint subsets of size N  each, Sj, 0 £ <j N .

Here, the x coordinate of any point in Sj is no greater

than that of any point in Sj+1, for 0 1£ < -j N . The
rest of computation is performed in two phases:

Phase 1: Compute the convex hulls of the subsets Sj,
0 £ <j N  in parallel. Each convex hull is computed
in O(1) time using a submesh of size N N¥ . Using
Lemma 6, move the extreme points of each convex
hull in O(1) time to a row of the submesh such that
the points are sorted in angular order with respect to
a point inside the convex hull.

Phase 2: Merge the convex hulls of S0, S1, �, Sj in parallel
for each j, 0 £ <j N .

An algorithm to obtain the extreme points of Sq,
0 £ <q N  is shown in the following. Initially, the

N  points of Sq are stored in the top row of a submesh
of size N N¥ . The basic idea is to consider all the
lines arising from each pair of distinct points. For each
line, check if all the other points lie on one side of the
line. If so, declare the line joining the points as an edge
of the convex hull. The set of endpoints of the detected
edges is the set of extreme points. The steps are given
below for each N N¥  submesh.

1) Use column buses to broadcast the points of Sq
from row 0 to all other rows.

2) In row i j N k= + , 0 � i < N, points j and k are
broadcast to all processors (in row i) using a row bus.

3) Using the points j and k received in Step 2, each
processor computes a, b, and c such that ax + by + c
= 0 defines the straight line through points j and k.

4) Let (u, v) be the coordinates of the point of Sq as-
signed to PE(e, f ) in Step 1. PE(e, f ) sets its flag to 1 if
au + bv + c > 0, –1 if au + bv + c < 0, 0 if au + bv + c = 0
and (u, v) is on the line segment connecting points j
and k of Step 3 (this includes the cases when (u, v) is
point j or k), 2 otherwise.

5) Using row buses and row bus splitting, PE(i, 0),
i j N k= + , 0 � i < N, determines if there is a flag = 2
on row i. If so, the line segment connecting point j
and point k is not an edge of the convex hull. If not,
it determines if there is a 1 and later if there is a –1.
If both a 1 and –1 are present, the line segment
between point j and point k is not an edge of the
convex hull. Otherwise it is.

6) If PE(i, 0), i j N k= + , 0 � i < N, j > k detects that
the line segment between point j and point k is an
edge of the convex hull, then using a row bus it
broadcasts a 1 to PE(i, j) and PE(i, k).

7) PEs that receive a 1 in Step 6 broadcast this to the
PEs in row 0 of the same column (note 0 or 4 PEs in
each column receive a 1 in Step 6; using column
bus splitting, all but one of these may be elimi-
nated to avoid concurrent writes to a column bus).

8) Now, PEs in row 0 mark the points of Sq they con-
tain as being in or out of E(Sq) (note: a point is in
E(Sq) if and only if it receives a 1 value in Step 7).

9) Using row bus splitting in row 0, any three ex-
treme points are accumulated in PE(0, 0). In case
|E(Sq)| = 2, the remainder of this step is omitted.
The centroid of these three points is computed.
Since no three points of E(Sq) can be colinear, the
centroid is an interior point of the convex hull.

10)  The centroid computed in Step 9 is broadcast to all
points of E(Sq) using a row bus. Each of these
points computes the polar angle made1 by the
point using the centroid as the origin.

11)  The points of E(Sq) are sorted by polar angle using
Lemma 6.

Let BM(i, j) denote the (i, j)th block when the mesh is
partitioned into N blocks of size N N¥ , 0 � i, j < N.

At the end of Phase 1, E(Sj) is routed to BM(j, j), for
0 £ <j N . In Phase 2, merge of the convex hulls is
performed. Our merge technique involves masking
vectors. The basic idea is to associate N  masking
vectors for each set of extreme points and perform
logical operations on the masking vectors instead of
directly updating the extreme points in each step. The
actual updating of the extreme points will be per-
formed at the end of Phase 2 using the final masking
vector for the corresponding set. Let Mi,j be the

masking vector associated with BM(i, j) and Mi,j(r) be

the rth element (a bit) of Mi,j. N  masking vectors,
M M Mj j N j0 1, 1, ,, , ,K -  will be used for parallel up-

dating of the extreme points of E(Sj). Details will fol-
low. At the end of Phase 2, BM(j, j) will delete the rth
point of the E(Sj) if Mj,j(r) is 0, 0 £ <r N  and will

output the updated E(Sj).

Phase 2:

1) Initialize Mi,j(r) = 1 if the rth point of Sj is in E(Sj).
2) Refer to Fig. 7 for this step. For all i, j, BM(i, j), i � j,

identifies the upper and the lower tangent lines
between CH(Si) and CH(Sj). First, we will show
how to identify the upper tangent line. Broadcast
E(Si) and E(Sj) within BM(i, j) such that all the PEs
in row(column) u(v) of BM(i, j) have copies of the
u(v)th point of E(Si)(E(Sj)), for 0 £ <u v N, . For
all u, v, the (u, v)th PE of BM(i, j) computes the

1. An alternative to using the polar angle is discussed on page 100 of [36].
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slope of the line connecting the uth point of E(Si)

and the vth point of E(Sj). Since the points of E(Sj)
in row u is in angular order, the slopes in row u
connecting the points of E(Sj) to the uth point of

E(Si) forms a tritonic (increase, decrease, and in-
crease or decrease, increase, and decrease) se-
quence. So the maximum can be identified in O(1)
time using Lemma 2. This can be simultaneously
performed for all u, 0 £ <u N . As a result, we
have up to N  maximums in BM(i, j). The mini-
mum of the N  maximums can be obtained in
O(1) time using Lemma 3. The line associated with
the minimum is the upper tangent line for CH(Si)

and CH(Sj). The lower tangent line can be similarly
obtained by identifying the maximum of minimums.
Now set Mi,j(r) to 0 if the rth point of E(Sj) is inside
the polygon formed by the (up to four) tangential
points (marked by ‘*’ in Fig. 7), for 0 £ <r N .
Create a set, T(i, j), to hold the tangent lines. Now
Mi,j represents the extreme points of CH(Sj) which

would survive the merge with CH(Si). The rth

point of E(Sj) belongs to E(Si < Sj) if Mi,j(r) = 1 .
3) For each j, 0 £ <j N , combine N  blocks, BM(i, j),

0 £ <j N  into an N N¥  submesh. In this sub-

mesh, set Mi,j(r) = M0,j(r) » M1,j(r) » � » Mi,j(r) for
each r, 0 £ <r N . This can be performed in O(1)
time using Lemma 1.

4) Note that, if j < i, it is still possible that there exist
(up to two) points of E(Sj) that do not belong to

E(S0 < S1 < � < Si < Sj), but not eliminated so far.

One example is shown as u1(= u2) in Fig. 8b. Broad-
cast T(i, j), 0 £ <i j N,  such that BM(i, j) has cop-
ies of T(i′, j), 0 � i′ � i. For T(i, j), refer to Step 2 of
Phase 2. Identify the uppermost tangent line and the
lowermost tangent line in T(i′, j), 0 � i′ < j as illus-

trated in Fig. 8a. Let u1(l1) be the resulting up-

per(lower) tangent point on E(Sj). This requires us to
compute the maximum(minimum) of (up to N )
slopes. This can be performed in O(1) time using
BM(i, j) by Lemma 3. Similarly identify the upper-
most(lowermost) tangent line in T(i′, j), j < i′ � i and

let u2(l2) be the upper(lower) tangent point on E(Sj).

Compare u1(l1) against u2(l2). If u1 = u2 as in Fig. 8b,

compute the minimum enclosing angle from u1.
The enclosing angle is defined to enclose all the
tangent points associated the tangent lines in T(i′, j),
0 � i′ � i. If the angle is greater than 180 degrees, set

Mi,j(r) to 0 when u1 is the rth point in E(Sj). If u1 �

u2, do nothing. Do similarly for l1 and l2. At this

time, Mi,j(r) is equal to 1 if the rth point of E(Sj) be-

longs to E(S0 < S1 < � < Si < Sj).

5) (Updating the extreme points using the final mask-
ing vectors) BM(j, j), 0 £ <j N , has set aside an

original copy of E(Sj). The points of E(Sj) are broad-
cast via column buses to BM(i, j), 0 £ <i N . For
all r, 0 £ <r N , for all j, 0 £ <i j N, , BM(i, j)

eliminates the rth point from E(Sj) if Mi,j(r) = 0. Con-
sider the submesh consisting of BM(j, i), 0 � i < j. The
set of points in this submesh that have survived is
equal to E Sj

j
j( )U ¢= ¢0 . �

Fig. 7. Illustration of Step 3 of Phase 2.

Fig. 8. Illustration of Step 4 of Phase 2.
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As for the O(1) time convex hull algorithm in [38], we
have found it has a flaw. The algorithm regards the union
of the sets of nonextreme points resulting from the merge of
all pairs of convex hulls (of disjoint subsets) as the nonex-
treme points of the convex hull enclosing all the convex
hulls (of subsets). Step 5 in Phase 2 of our algorithm is
missing in [38]. This would result in incomplete elimination
of nonextreme points when more than two convex hulls are
merged. Consider Fig. 8b as a counterexample. The nonex-
treme points marked “X” are eliminated in Step 3 of Phase
2 as well as in the convex hull algorithm in [38]. However, a
point such as u1 (= u2) is not eliminated. Such points will be
eliminated in Step 5 of Phase 2 in our algorithm. Further,
our algorithm differs from [38] in that it provides prefix
computation of convex hulls of N  subsets while the algo-
rithm in [38] computes the convex hull of the union of the

N  subsets. Theorem 1 implies:

COROLLARY 1. Given N points stored in a row of the reconfigur-
able mesh, the convex hull of these points can be computed
in O(1) time on an N � N reconfigurable mesh. Further,
the extreme points can be stored in a row in angular order
with respect to a point inside the convex hull.

3.2 Smallest Enclosing Box
It is well known [8] that the smallest enclosing rectangle of
a set of N planar points has at least one side that is an ex-
tension of an edge of the convex hull. Hence, the smallest
enclosing rectangle may be found by first computing the
convex hull; then determining for each convex hull edge,
the smallest enclosing rectangle that has one side which is
an extension of this edge; and finally determining the small-
est of these rectangles. The algorithm is shown in Fig. 9.

3.3 Triangulation
Given a set S having N planar points, the triangulation prob-
lem is to join them by nonintersecting straight-line segments
(called triangulating edges) so that every region internal to
the convex hull of S is a triangle. The input is N points and
the output is the coordinates of the endpoints of the trian-
gulating edges. Note that the number of triangulating edges
is O(N). Without loss of generality, assume that each point
has distinct x and y coordinates and no four points are
colinear.

Our algorithm runs in the following two phases:
Phase 1 (Solve subproblems) Sort the N points in S by their

x coordinates. Partition them into N  subsets of

N points each, Si, 0 £ <i N  such that, the x coordi-

nate of any point in Si is greater than the x coordinate of

any point in Si−1, 1 £ <i N  . Each subset is assigned to
a submesh of size N N¥ . Triangulate all the subsets in
parallel.

Phase 2 (Merge) Triangulate the region(s) formed between
the convex hull of S and the convex hulls of Si, 0 £ <i N .

In Phase 1, note that the the number of inputs is N  and
the size of the available mesh is N N¥ . This enables us to
develop a simple O(1) time algorithm for each subproblem.
Then we develop a merge technique which results in an

O(1) time algorithm to triangulate N points using an N � N
mesh.

3.3.1 O(1) Time Solution Using N2 � N Mesh
Let S denote the given set of N planar points. The basic
scheme is to divide the convex hull of S into N − 2 special
polygons (spolygons) and triangulate the polygons in paral-
lel. The spolygons are suitable for O(1) time triangulation
using the broadcast feature of reconfigurable mesh. The
spolygon is a special type of polygon formed between a con-
vex hull and a point, p0, outside the convex hull as illus-
trated (by the shaded region) in Fig. 10. p q0 0  represents the

upper tangent line from p0 to the convex hull, while p q0 4

represents the lower tangent line.

LEMMA 7. Given N planar points stored in a row of the reconfig-
urable mesh, the triangulation problem can be solved in
O(1) time on an N2 � N reconfigurable mesh.

PROOF. Initially, the N points are assumed to be stored in
PE(0, i), 0 � i < N. Using Lemma 6, sort S into as-
cending order using the x coordinates as keys. Let pi
be the ith point in the sequence and let xi (yi) be the x
(y) coordinate of pi. Let CHi, 1 � i � N − 3 denote the
convex hull of the points pi′, i � i′ < N. Let EXi denote
the set of extreme points of CHi, 1 � i � N − 3. Then,

Step 1: Find the convex hull of the N points.

Step 2: [Construct convex hull edges]
(a)The convex hull points are broadcast to all rows using

column buses. These are saved in variable R of each
processor.

(b)PE[i, i] broadcasts its R value using a row bus to the S
variable of all processors on row i, 1 � i � p, p = number
of convex hull points.

(c)PE[i, i + 1] broadcasts its R value using a row bus to the T
variable of all processors on row i, 1 � i � p � 1. For i = p,
PE[p, 1] does this. {Note: Now each PE in row i contains
the same edge of the convex hull in its S and T variables.}

Step 3: [Determine area of minimum rectangle for each edge]
(a)Using its R, S, and T values, each PE computes the per-

pendicular distance D between point R and the straight
line defined by the points S and T. Since, the Rs are in
convex hull order, the D values in a row form a tritonic
sequence whose minimum, h, can be found in O(1) time
using row bus splitting. h is the minimum height of the
rectangle for the row edge.

(b)Let P be the perpendicular through the middle of the
edge defined by points S and T. Each processor com-
putes the perpendicular distance of its point R from the
infinite line P (use negative distances for points on one
side of P and positive distances for points on the other
side). These distances form a quadratonic sequence and
its maximum, dmax, and minimum, dmin, can be found in
O(1) time using row bus splitting.

(c) The minimum area, A, of the rectangle for row i is
h*(dmax � dmin). Let this be stored in the A value of PE[i, 1].

Step 4: [Determine overall minimum rectangle]
Compute the minimum of the As of PEs [i, 1], 1 � i � p.
This is done by forming the cross product of the A’s in a
p � p sub array and comparing the two As in each PE.

Fig. 9. Minimum enclosing rectangle.
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the triangulation problem for S can be reduced to trian-
gulation of all the spolygons formed between pi and
CHi+1 for 0 � i � N − 4. Each spolygon is determined
and triangulated by a submesh of size N � N.

Divide the reconfigurable mesh into RM(i), 0 � i < N
such that RM(i) consists of PE(iN + j, k), 0 � j, k < N.
Broadcast the N sorted points in the top row to RM(i),
0 � i < N such that the top row of RM(i) receives
(xk, yk), i � k < N. RM(i) computes CHi+1, 0 � i � N − 4.
Using Corollary 1, this is completed in O(1) time. EXi+1
is stored in the leftmost column of RM(i). Using RM(i),
sort EXi+1 in angular order with respect to a point in-
side CHi+1. This is done in parallel for 0 � i � N − 4. Us-
ing Lemma 6, this can be completed in O(1) time.

The spolygon formed by (xi, yi) and CHi+1 is deter-
mined by RM(i) by computing the upper and lower
tangents from (xi, yi) to CHi+1. This can be completed
in O(1) time as in the proof of Theorem 1. Mark all the
lines joining (xi, yi) and the extreme points between
the upper and lower tangents as triangulating edges.
Note that RM(N − 3) has only three points. The three
edges connecting the points are marked as triangulat-
ing edges. Now there are at most N − 1 − i triangulating
edges in RM(i). The triangulating edges from RM(i), 0 � i
� N − 3 can be collected into the top row of the entire
mesh in O(1) time. Let NT(i) denote the number of tri-
angulating edges in RM(i). NT(i) can be computed in
O(1) time using Lemma 5. Note that,

NT i N
i

i N

a f
=

= -

Â = -
0

3

2 3,

for N � 4. To assign the columns to be used for send-
ing edges perform prefix summation on NT(i), 0 � i �
N − 3. This can be performed in O(1) time using
Lemma 5. RM(i) uses columns

NT k N
k

k i

b g a f
=

= -

Â
F
HG

I
KJ0

1

mod

through

NT k N
k

k i

b g a f-
F
HG

I
KJ=

=

Â 1
0

mod

to send its edges to the top row. �

3.3.2 O(1) Time Merge
Let S be the given set of N points. Assume that S is divided
into Si, 0 £ <i N  such that, the x coordinate of any point

in Si is greater than the x coordinate of any point in Si−1, for

1 £ <i N . Using Lemma 7, the triangulation of each Si,
0 £ <i N  can be performed in O(1) time simultaneously
for all i on an N � N reconfigurable mesh. To complete the
triangulation of S, we only need show how to triangulate
the region(s) formed between the convex hull of S and the
convex hulls of Si, 0 £ <i N . Now we regard the convex
hull of a subset of points as a superpoint and employ a
similar scheme as in Section 3.3.1. One difference is that the
polygons formed between a superpoint and the convex hull
of a set of superpoints need not be a spolygon. For this we
partition the region(s) into N - 1 disjoint polygons of a
special type called dpolygons, and triangulate them in par-
allel. The dpolygon is a polygon formed between two dis-
joint convex hulls as shown in Fig. 11a. v w0 0  represents the
upper common tangent while v w6 5  represents the lower
common tangent. The ith dpolygon is defined as the polygon
formed between the convex hull of Si and the convex hull of

Uk i
N

kS i N= +
- £ £ -1

1 0 2, .

LEMMA 8. The dpolygon formed by two disjoint convex hulls
having N1 and N2 extreme points can be triangulated in
O(1) time using an N1 � N2 reconfigurable mesh.

PROOF. We use the technique by Wang and Tsin [49] on the
CREW PRAM. Their technique results in an O(log N)
time solution while the reconfigurable bus system can
be exploited in nontrivial ways to achieve O(1) time.
Without loss of generality, assume N1 � N2 and vi, 0 �
i < N1 represent the extreme points (sorted in angular
order) of the left convex hull and wj, 0 � j < N2 repre-
sent those of the right convex hull. Initially, vi is as-
sumed to be in PE(i, 0) for 0 � i < N1 and wj is as-
sumed to be in PE(0, j) for 0 � j < N2. Let x(p) be the x
coordinate of a point p. Identify vr and wl such that
x(vr) � x(vi), 0 � i < N1 and x(wl) � x(wj), 0 � j < N2. In
the example shown in Fig. 11a, vr = v3 and wl = w4.
Since both x(vi), 0 � i < N1 and x(wj), 0 � j < N2 form
bitonic sequences, vr, wl can be identified in O(1) time
using Lemma 2. The end points of the upper and
lower tangents (v0, w0 and v6, w5 in Fig. 11a) can be
similarly identified. We will show how to triangulate
the upper half of the dpolygon, formed by vi, 0 � i � r
and wj, 0 � j � l. The lower half formed by vi, r � i < N1
and wj, l � j < N2 can be triangulated in the same way.

1) For each wj, 0 � j � l, find a vk such that the angle
²vr wj vk is the maximum over 0 � k � r − 1. Create a
pair of points (vk, wj) as a triangulating edge. l + 1
pairs of points will be created as illustrated in
Fig. 11b.

2) For 0 � j � l, create (vk, wj−1) if (vk, wj) and (vk′, wj−1)
were created in Step 1 and k � k′. This can be per-
formed in O(1) time (See Fig. 11c).

3) For 0 � i � r, if vi does not belong to any pairs cre-
ated in Steps 1 or 2 and vi is located between vi′ and

Fig. 10. A spolygon.
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vi′′ where (vi′, wj) and (vi′′, wj) belong to the pairs
created in Steps 1 or 2, then create a pair (vi, wj)
(See Fig. 11d).

Since all the pairs created are in either distinct rows or
in distinct columns, they can all be collected into the
leftmost column in O(1) time without any conflict on
the bus. �

3.3.3 O(1)Time Solution Using N � N Mesh
Lemmas 6, 7, 8, and Theorem 1 can be combined to result in
an O(1) time algorithm to triangulate N points on an N � N
reconfigurable mesh.

THEOREM 2. Given N points stored in a row of the reconfigurable
mesh, these can be triangulated in O(1) time on an N � N
reconfigurable mesh.

PROOF. Let S be the given set of N points. Using Lemma 6,
partition S into Si, 0 £ <i N  such that S Ni =  and

the x coordinates of all the points in Si are greater than

those in Si−1 for 1 £ <i N . Let CH(Si) and E (Si) de-

note the convex hull and the extreme points of Si re-
spectively. Then, triangulating S can be decomposed
into the following two steps.

1) Triangulate Si, 0 £ <i N .

2) Triangulate the dpolygons formed between CH(Si)

and CH Sk i
k N

k( )U = +
= -

1
1 , for 0 2£ £ -i N .

From Theorem 1, CH Sk i
k N

k( )U = +
= -

1
1 , 0 2£ £ -i N

can be computed in O(1) time on an N � N reconfig-
urable mesh. Let CM(i) denote the submesh consisting
of PE u i N w( , )+ , 0 � u < N , 0 £ <w N .

E Sk i
k N

k( )U = +
= -

1
1  is stored in CM(i). In O(1) time, CM(i)

identifies the dpolygon formed between CH(Si) and

CH Sk i
k N

k( )U = +
= -

1
1 , 0 £ <i N .

Using Lemma 8, each dpolygon can be triangulated
in O(1) time by a submesh CM(i). The triangulating
edges created in each CM(i), 0 2£ £ -i N  by Step 3
in the proof of Lemma 8 are in distinct rows of the
entire mesh. Note also that the edges created in Steps 1
and 2 in the proof of Lemma 8 are in distinct columns
of the mesh. Thus, the triangulating edges from
CM(i), 0 £ <i N  can be collected into the leftmost
column of the mesh in O(1) time. �

3.4 All-Pairs Nearest Neighbor
Given a set S of N planar points, the all-pairs nearest neighbor
problem can be defined as follows: For each p ° S, find a q ° S,
such that q � p and q is nearest to p among all points in S.
Miller and Stout [25] solve the problem in O N( )  time us-
ing log N levels of recursion on a 2-MCC of size N N¥ .
In [23], Mackenzie and Stout solve it using log log N levels
of recursion on a hypercube of size N to run in O(log N (log
log N)3) time. We develop an O(1) time algorithm for a re-
configurable mesh of size N � N. In the following, any dis-
tance measure that can be computed within a PE in O(1)
time given a pair of arguments can be used.

THEOREM 3. Given N points stored in a row of the reconfigurable
mesh, the all-pairs nearest neighbor problem can be solved
in O(1) time on an N � N reconfigurable mesh.

PROOF. Let S be the input set of N planar points. Without
loss of generality, assume that no two points have ei-
ther the same x coordinate or the same y coordinate.

1) Using Lemma 6, sort the points by their x coordi-
nates. Partition the sorted sequence of points into
Xb, 0 � b < N1/4, such that _Xb

_ = N3/4 and the x co-
ordinates of the points in Xb is greater than the x
coordinates of the points in Xb−1.

2) Solve the all-pairs nearest neighbor problem within
each Xb on a submesh of size N3/4 � N, simultane-
ously for 0 � b < N1/4.

3) Repeat Step 1 using the y coordinates as keys. Let
Ya, 0 � a < N1/4, be the resulting subsets.

4) Solve the all-pairs nearest neighbor problem within
each Ya on a submesh of size N3/4 � N, simultane-
ously for 0 � a < N1/4.

Fig. 11. Triangulation of a dpolygon (e: triangulating edge).
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5) For each p ° Ya > Xb, 0 � a, b < N1/4, find its nearest
neighbor point within Ya < Xb by comparing its
nearest neighbor within Ya and that within Xb.

6) Route Ya > Xb to the (a, b)th submesh of size N3/4 �
N3/4, 0 � a, b < N1/4. Note that _Ya > Xb

_ � N3/4.
7) Let xb (ya) be the smallest x (y) coordinate of the

points in Xb (Ya). Broadcast xb, xb+1, ya, ya+1 to all the
points in Ya > Xb. For each point, compare its current
nearest neighbor with the four grid points, (ya, xb),
(ya+1, xb), (ya, xb+1), and (ya+1, xb+1). Mark the point if
there is any grid point which is closer than its cur-
rent nearest neighbor. It is known [25], [23] that
after all the points in Ya > Xb have found their
nearest neighbors within Ya < Xb, at most eight
points from Ya > Xb have not yet found their near-
est neighbors in S. Note that the marked points are
the ones that have not yet found their nearest
neighbors in S.

8) Route the marked points (at most eight) from
Ya > Xb, 0 � a, b < N1/4 to the (a, b)th submesh of size

N N¥ , 0 � a, b < N1/4. Call these points R(a, b).
Copy the set of all marked points to each submesh.
Note that there are at most 8 N  marked points in
the entire mesh.

9) In the (a, b)th submesh, update the current nearest
neighbor of each point in R(a, b) by computing the
distances between the point and the other N − 1
points of S. This can be performed by recursively
using Lemma 3. The minimum of the N − 1 dis-
tances can be obtained in O(1) time using a sub-
mesh of size N N¥ . First, the N − 1 distances are
divided into N  subsets consisting of either N
or N - 1 points. The minimum of each subset can
be identified in O(1) time using a block of size

N N¥ . Then the minimum of the resulting
N  minimums can be obtained in O(1) time to

find the nearest point. Since there are only eight
points in R(a, b), the points in R(a, b) can update their
nearest neighbors in O(1) time, for all 0 � a, b < N1/4.

Let T(N) be the time needed to perform the above
steps on a set S of size N on an N � N reconfigurable

mesh. Then, Step 2 and Step 4 each take T(N3/4) time.
Since other steps can be performed in O(1) time, we
have T(N) = 2T(N3/4) + O(1). We have partitioned the

input to N1/4 subsets of size N3/4. This results in at
most 8 N  points which have not found their nearest
points before the start of Step 9. If we had partitioned
the input in Step 1(and in Step 3) into N1/2 subsets of

size N1/2, there would be up to 8N points which have
not found their nearest neighbors at the start of Step 9.

The remaining problem is how to perform Step 2
and Step 4 in O(1) time. This problem can be solved
using one level of recursion in Step 2 and Step 4.
Then, we have T(N) = 2[2[T(N27/64) + O(1)] + O(1)] +
O(1). Clearly, the all-pairs nearest neighbor problem on

N27/64 points can be solved in O(1) time using an N �

N27/64 reconfigurable mesh. Alternatively the N3/4 � N

submesh may be partitioned into N3/4 N3/4 � N1/4

submeshes and each of these finds the nearest neigh-
bor for one point. For this, in each N3/4 � N1/4 sub-

mesh, the distance to each of the remaining N3/4 − 1
points is found in the leftmost column. Next, we need
to find the minimum of these distances. This is done
in three passes. In the first pass, each N1/4 � N1/4

submesh finds the minimum of N1/4 values by com-

paring all pairs of distances. This leaves us with N1/2

candidates. In the second pass, these candidates are
divided into N1/4 groups and submeshes of size N1/2 �

N1/4 are used to find the minimum in each group.

Following this, N1/4 candidates remain. Their mini-

mum is now found using the entire N3/4 � N1/4 sub-
mesh. Each pass takes O(1) time. Thus, T(N) = O(1). �

3.5 Two-Set Dominance Counting
Given two points p and q in d-dimensional space, p is said to
dominate q if each coordinate of p is larger than the corre-
sponding coordinate of q. Given a set S of m points and a set T
of k points, the two-set dominance counting problem between S
and T is, for each point p ° S, compute the number of points in
T dominated by p, and also for each point q ° T, find the num-
ber of points in S dominated by q. Let N = m + k. In the fol-
lowing, we develop a constant time algorithm for d = 2.

Fig. 12. Computing the number of points dominated by a point p.

THEOREM 4. Given N points stored in a row of the reconfigurable
mesh, the two-set dominance counting problem can be
solved in O(1) time on an N � N reconfigurable mesh.

PROOF. We will show, for each point p ° S, how to find the
number of points in T dominated by p. Partition S <
T into N  subsets, Xb, such that the x coordinates of
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all the points in Xb are greater than those in Xb−1,

0 £ <b N . Similarly, create Ya, 0 £ <a N  using the

y coordinates as keys. For each point p ° S > Ya > Xb,
0 £ <a b N, , the number of points in T dominated
by p can be computed by the following four steps (See
Fig. 12):

1) Find the number of points which belong to T > Ya,
0 £ <a N  and are dominated by p, simultane-

ously for all p ° S > Ya > Xb.
2) Find the number of points which belong to (�0�i<a Y

i)
> Xb > T and are dominated by p, simultaneously
for all p ° S > Ya > Xb.

3) Compute Y X Ti j

j

b

i

a
I I

=

-

=

- ÂÂ 0

1

0

1
.

4) Sum up the above three numbers.

We will show how to implement Step 1 in O(1) time in
parallel for 0 £ <a b N, . In the ath N N¥  submesh,

the two-set dominance counting problem for S > Ya and

T > Ya is solved. Note that since S Y NaI £  and

T Y NaI £ , each p ° S > Ya can use a N N¥

block of the ath N N¥  submesh for this purpose.

The number of points in T > Ya dominated by p is

now trivially obtained. Since each p knows which Xb it
belongs to, it can easily determine whether or not the
count just obtained contributes to Step 1.

To implement Step 3, _Ya > Xb > T_ is computed in
a submesh of size N N¥ , 0 £ <a b N, . Note

that, Y X T Na bI I £ . Prefix summation of _Ya > Xb

> T_ over 0 £ <b N  is performed in the ath sub-
mesh of size N N¥ . This is performed by prefix
modular computation using k N= + 1. Using
Lemma 4, this can be completed in O(1) time. Each
_Ya > Xb > T_ is represented as a 0/1 vector of length

N  having _Ya > Xb > T_ 1s. Another prefix summa-
tion on the prefix sums over 0 £ <a N  can be per-
formed using Lemma 5. As a result, we have

Y X Ti j

j

b

i

a

I I
=

-

=

-

ÂÂ
0

1

0

1

for all a, b, 0 £ <a b N, . Step 4 computes N sums of
triples computed in Steps 1, 2, and 3. This can be
completed in O(1) time. Thus, all the steps can be per-
formed in O(1) time. �

3.6 Three-Dimensional Maxima
Given a set S of N points in three-dimensional space, the
three-dimensional maxima problem is to find all points p ° S
such that no other point in S dominates p.

THEOREM 5. Given N points in three dimensions stored in a row
of the mesh, the three-dimensional maxima problem can be
solved in O(1) time on an N � N reconfigurable mesh.

PROOF. The problem is solved in constant time using the
algorithm of Fig. 13. The input points are in row 0 of
the mesh. �

4 CONCLUSION

We have shown O(1) time solutions for the convex hull,
triangulation, all-pairs nearest neighbors, the smallest en-
closing rectangle, two-set dominance counting, and three-
dimensional maxima problems on the reconfigurable mesh.
All the solutions accept N points as input and solve the
problem using N � N reconfigurable mesh. These solutions
either improve on known results or present parallel solu-
tions to problems never examined on the reconfigurable
mesh model. One major contribution of the paper is in op-
timizing the divide-and-conquer parameters such as the
number of levels and the breadth of each level of the recur-
sion to obtain constant time solutions using N � N recon-
figurable mesh. For this, we have developed nontrivial
techniques to exploit the reconfiguration feature.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Science Foundation under grants IRI-9217528 and MIP-
9103379 and by DARPA and AFOSR contracts F-49260-89-
C-0126 and F-49620-90-C-0078 and by KOSEF under con-
tract 961-0909-052-1.

REFERENCES

[1] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, “The
Power of Reconfiguration,” J. Parallel and Distributed Computing,
vol. 13, no. 2, pp. 139-153, 1991.

[2] Y. Ben-Asher and A. Schuster, “Optical Splitting Graphs,” Proc.
Int’l Topical Meeting on Optical Computing, Kobe, Japan, 1990.

[3] Y. Ben-Asher, D. Gordon, and A. Schuster, “Optimal Simulations
in Reconfigurable Arrays,” Technical Report #716, Computer Sci-
ence Dept., Technion—Israel Inst. of Technology, Feb. 1992.

[4] V. Bokka, H. Gurla, S. Olariu, and J.L. Schwing, “Constant-Time
Convexity Problems on Reconfigurable Meshes,” J. Parallel and
Distributed Computing, vol. 27, no. 1, pp. 86-99, May 1995.

1: Broadcast the N points on row 0 to all rows using column
buses.

2: [Use the ith row to determine if the ith point of S is a non-
dominated point]
—PE (i, i) broadcasts its point to all processors in its row

using a row bus, 0 � i < N
—PE(i, j), 0 � i, j < N compares the coordinates of the point

it received in Step 1 to those of the points it received in
Step 2. If each coordinate of the Step 1 point is larger
than the corresponding coordinate of its Step 2 point, then
PE(i, j) sets its T variable to 0. Otherwise, T is set to 1.

—Using row bus splitting, PE(i, 1) determines if there is a 0
in row i, 0 � i < N . If so, it sets its U variable to 0 (the ith
point is dominated). Otherwise, U is set to 1 (the ith
point is not dominated).

3: [Route the results back to row 0]
Using row buses PE(i, 0) sends its U value to PE(i, i). Using
column buses, PE(i, i) sends the U value just received to
PE(0, i), 0 � i < N .

Fig. 13. Simple constant time algorithm for three-dimensional maxima.



JANG ET AL.:  CONSTANT TIME ALGORITHMS FOR COMPUTATIONAL GEOMETRY ON THE RECONFIGURABLE MESH 11

[5] V. Bokka, H. Gurla, S. Olariu, and J.L. Schwing, “Constant-Time
Triangulation Problems on Reconfigurable Meshes,” Proc. Applica-
tion Specific Array Processor, pp. 357-368, San Francisco, Aug. 1994.

[6] R. Cole and U. Vishkin, “Approximate Coin Tossing with Appli-
cations to List, Tree and Graph problems,” Proc. IEEE Symp.
Foundations of Computer Science, pp. 478-491, 1986.

[7] H. Elgindy and P. Wegrowicz, “Selection on the Reconfigurable
Mesh,” Proc. Int’l Conf. Parallel Processing, pp. III.26-III.33, Aug. 1991.

[8] H. Freeman and R. Shapira, “Determining the Minimal-Area En-
casing Rectangle for an Arbitrary Closed Curve,” Comm. ACM,
vol. 18, pp. 409-413, 1975.

[9] E. Hao, P.D. MacKenzie, and Q.F. Stout, “Selection on the Recon-
figurable Mesh,” Proc. Frontiers of Massively Parallel Computation,
pp. 38-45, Oct. 1992.

[10] J. Jang and V.K. Prasanna, “An Optimal Sorting Algorithm on
Reconfigurable Mesh,” J. Parallel and Distributed Computing, vol. 25,
pp. 31-41, Feb., 1995. Also appears as Technical Report IRIS #277,
Dept. of EE-Systems, Univ. of Southern California, Aug. 1991.

[11] J. Jang and V.K. Prasanna, “Efficient Parallel Algorithms for Some
Geometric Problems on Reconfigurable Mesh,” Proc. Int’l Conf.
Parallel Processing, pp. III.127-III.130, Aug. 1992.

[12] J. Jang, H. Park, and V.K. Prasanna, “A Fast Algorithm for Com-
puting a Histogram on Reconfigurable Mesh,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 97-106, Feb. 1995.

[13] J. Jang, H. Park, and V.K. Prasanna, “An Optimal Multiplication
Algorithm on Reconfigurable Mesh,” Proc. Symp. Parallel and Dis-
tributed Processing, pp. 384-391, Dec. 1992.

[14] J. Jang, V.K. Prasanna, and H. Park, “A Bit Model of Reconfigur-
able Mesh,” Proc. Reconfigurable Architectures Workshop, IPPS ‘94,
Cancun, Mexico, Apr. 1994.

[15] J. Jenq and S. Sahni, “Reconfigurable Mesh Algorithms for the
Area and Perimeter of Image Components,” Proc. Int’l Conf. Par-
allel Processing, pp. 280-281, Aug. 1991.

[16] J. Jenq and S. Sahni, “Reconfigurable Mesh Algorithms for Image
Shrinking, Expanding, Clustering, and Template Matching,” Proc.
Int’l Parallel Processing Symp., pp. 208-215, Apr. 1991.

[17] J. Jenq and S. Sahni, “Histogramming on a Reconfigurable Mesh
Computer,” Proc. Int’l Parallel Processing Symp., pp. 425-432, Mar.
1992.

[18] J. Levinson, I. Kuroda, and T. Nishitani, “A Reconfigurable Proc-
essor Array with Routing LSIs and General Purpose DSPs,” Proc.
Int’l Conf. Application Specific Array Processors, Oct. 1992.

[19] H. Li and M. Maresca, “Polymorphic-Torus Network,” IEEE
Trans. Computers, vol. 38, no. 9, pp. 1,345-1,351, Sept. 1989.

[20] R. Lin, “Shift Switching and Novel Arithmetic Schemes,” Proc.
29th Asilomar Conf. Signals, Systems, and Computers, pp. 580-585,
Pacific Grove, Calif., Nov. 1995.

[21] R. Lin and S. Olariu, “Reconfigurable Buses with Shift Switching:
Concept and Applications,” IEEE Trans. Parallel And Distributed
Systems, vol. 6, no 1, pp. 93-102, Jan. 1995.

[22] R. Lin, S. Olariu, J. Schwing, and J. Zhang, “A VLSI-Optimal Con-
stant Time Sorting on Reconfigurable Mesh,” Proc. Ninth European
Workshop Parallel Computing, pp. 1-16, Spain, 1992.

[23] P.D. Mackenzie and Q.F. Stout, “Asymptotically Efficient Hyper-
cube Algorithms for Computational Geometry,” Proc. Frontiers of
Massively Parallel Computation, pp. 8-11, Oct. 1990.

[24] R. Miller, V.K. Prasanna Kumar, D.I. Reisis, and Q.F. Stout,
“Meshes with Reconfigurable Buses,” Proc. MIT Conf. Advanced
Research in VLSI, pp. 163-178, Apr. 1988.

[25] R. Miller and Q.F. Stout, “Mesh Computer Algorithms for Compu-
tational Geometry,” IEEE Trans. Computers, vol. 38, no. 3, pp. 321-
340, Mar. 1989.

[26] R. Miller, V.K. Prasanna Kumar, D. Reisis, and Q.F. Stout, “Image
Computations on Reconfigurable Mesh,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition(CVPR), pp. 925-930, 1988.

[27] R. Miller, V.K. Prasanna Kumar, D. Reisis, and Q.F. Stout,
“Parallel Computations on Reconfigurable Meshes,” IEEE Trans.
Computers, vol. 42, no. 6,  pp. 678-692, June 1993.

[28] K. Nakano, T. Msuzawa, and N. Tokura, “A Sub-Logarithmic
Time Sorting Algorithm on a Reconfigurable Array,” Inst. of Elec-
tronics, Information, and Communication Engineers, vol. E-74, no. 11,
pp. 3,894-3,901, Nov. 1991.

[29] M. Nigam and S. Sahni, “Sorting n Numbers on n � n Reconfigurable
Meshes with Buses,” Proc. Int’l Parallel Processing Symp., pp. 174-181,
Apr. 1993.

[30] M. Nigam and S. Sahni, “Computational Geometry on a Reconfig-
urable Mesh,” Proc. Int’l Parallel Processing Symp., pp. 86-93, 1994.

[31] M. Nigam and S. Sahni, “Triangulation on a Reconfigurable Mesh
with Buses,” Proc. Int’l Conf. Parallel Processing, pp. 251-257, 1994.

[32] S. Olariu, J.L. Schwing, and J. Zhang, “Fast Computer Vision
Algorithms for Reconfigurable Meshes,” Image and Vision Com-
puting, pp. 610-616, 1992.

[33] S. Olariu, J.L. Schwing, and J. Zhang, “Time-Optimal Convex Hull
Algorithms on Enhanced Meshes,” BIT, vol. 33, pp. 396-410, 1993.

[34] H. Park, V.K. Prasanna, and J. Jang, “Fast Arithmetic on Recon-
figurable Meshes,” Proc. Int’l Conf. Parallel Processing , Aug. 1993.

[35] V.K. Prasanna Kumar and C.S. Raghavendra, “Array Processor
with Multiple Broadcasting,” J. Parallel and Distributed Computing,
vol. 4, pp. 173-190, 1987.

[36] F.P. Preparata and M.I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer-Verlag, 1985.

[37] D.I. Reisis, “Parallel Computations on Meshes with Static and
Reconfigurable Buses,” PhD Thesis, Dept. of EE-Systems, Univ. of
Southern California, May 1989.

[38] D.I. Reisis, “An Efficient Convex Hull Computation on the Recon-
figurable Mesh,” Proc. Int’l Parallel Processing Symp., pp. 142-145,
Mar. 1992.

[39] J. Rothstein, “Bus Automata, Brains, and Mental Models,” IEEE
Trans. Systems, Man, and Cybernetics, vol. 18, no. 4, pp. 522-531,
Apr. 1988.

[40] D.B. Shu, L.W. Chow, J.G. Nash, and C.C. Weems, “A Content Ad-
dressable Array Parallel Processor,” Proc. IEEE Workshop VLSI Sig-
nal Processing III, R.W. Brodersen and H.S. Moscovitz, eds., pp. 120-
128. New York: IEEE CS Press, 1988.

[41] L. Snyder, “Introduction to the Configurable Highly Parallel
Computer,” Computer, vol. 15, no. 1, pp. 47-56, Jan. 1982.

[42] Q.F. Stout, “Meshes with Multiple Buses,” Proc. IEEE Conf. Foun-
dations of Computer Science, pp. 264-272, Oct. 1986.

[43] C. Subbaraman, J.L. Trahan, and R. Vaidyanathan, “List Ranking
and Graph Algorithms on the Reconfigurable Multiple Bus Ma-
chine,” Proc. Int’l Conf. Parallel Processing, vol. III, pp. 244-247, St.
Charles, Ill., Aug. 1993.

[44] R.K. Thiruchelvan, J.L. Trahan, and R. Vaidyanathan, “On the
Power of Segmenting and Fusing Buses,” Proc. Seventh Int’l Paral-
lel Processing Symp., pp. 79-83, Newport Beach, Calif., Apr. 1993.

[45] J.L. Trahan, R. Vaidyanathan, and C.P. Subbaraman, “Constant
Time Graph and Poset Algorithms on the Reconfigurable Multiple
Bus Machine,” Proc. Int’l Conf. Parallel Processing, vol. III, pp. 214-
217, St. Charles, Ill., Aug. 1994.

[46] B.F. Wang, G.H. Chen, and F.C. Lin, “Constant Time Sorting on a
Processor Array with a Reconfigurable Bus Systems,” Information
Processing Letters, pp. 187-192, 1990.

[47] B.F. Wang and G.H. Chen, “Constant Time Algorithms for the
Transitive Closure Problem and Some Related Graph Problems
on Processor Arrays with Reconfigurable Bus Systems,” IEEE
Trans. Parallel and Distributed Systems, pp. 500-507, 1991.

[48] B.F. Wang, G.H. Chen, and H. Li, “Configurational Computation:
A New Computation Method on Processor Arrays with Reconfigur-
able Bus Systems,” Proc. Int’l Conf. Parallel Processing, pp. III. 42-49,
Aug. 1991.

[49] C.A. Wang and Y.H. Tsin, “An O(log n) Time Parallel Algorithm
for Triangulating a Set of Points in the Plane,” Information Proc-
essing Letters, vol. 25, pp. 55-60, Apr. 1987.

[50] C.C. Weems and J.H. Burrill, “The Image Understanding Archi-
tecture and Its Programming Environment,” Parallel Architectures
and Algorithms for Image Understanding, V.K. Prasanna Kumar, ed.
Academic Press, 1991.

Ju-wook Jang  received the BS degree in elec-
tronic engineering from Seoul National Univer-
sity in 1983, the MS degree in electrical engi-
neering from the Korea Advanced Institute of
Science and Technology in 1985, and the PhD
degree in electrical engineering from the Uni-
versity of Southern California in 1993. Since
1995, he has been a member of the faculty of
the Department of Electronic Engineering,
Sogang University. From 1985 to 1988 and from
1993 to 1995, he worked with Samsung Elec-

tronics in the fields of communication and computer development. His
research interests include parallel architectures, parallel algorithms,
and multimedia.



12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  1,  JANUARY  1997

Madhusudan Nigam  received a BTech in mechanical engineering
from the Indian Institute of Technology, Kanpur, India. He has a mas-
ter’s degree in engineering, computer science, and business admini-
stration from the University of Minnesota and a PhD in computer sci-
ence from the University of Florida. He has worked in industry in the
area of software design and development, A.I., and neural network
applications. His current research interests include parallel and distrib-
uted processing, networks, image processing, computational geometry,
and A.I. and neural network applications. He is also interested in finan-
cial markets and investment management.

Viktor K. Prasanna  (V.K. Prasanna Kumar)
received his BS in electronics engineering from
Bangalore University and his MS from the
School of Automation, Indian Institute of Sci-
ence. He obtained his PhD in computer science
from the Pennsylvania State University in 1983.
He is currently a professor in the Department of
Electrical Engineering-Systems, University of
Southern California, Los Angeles, and serves as
the director of the Computer Engineering Divi-
sion. His research interests include parallel

computation, computer architecture, VLSI computations, and high
performance computing for signal and image processing, and vision.

Dr. Prasanna has published extensively and consulted for industries
in the areas of his research interests. He served on the organizing
committees of several international meetings in VLSI computations,
parallel computation, and high performance computing. He is the gen-
eral co-chair of the IEEE International Parallel Processing Symposium,
1997, and has been the key person in developing the meeting into a
premier international meeting in parallel computing. He also serves on
the editorial boards of the Journal of Parallel and Distributed Comput-
ing and IEEE Transactions on Computers. He was the founding chair
of the IEEE Computer Society Technical Committee on Parallel Proc-
essing. He is a fellow of the IEEE.

Sartaj Sahni  received his BTech (electrical
engineering) degree from the Indian Institute of
Technology, Kanpur, and the MS and PhD de-
grees in computer science from Cornell Univer-
sity. He is a professor in the Department of
Computer and Information Sciences and Engi-
neering at the University of Florida.

Dr. Sahni’s research publications are on the
design and analysis of efficient algorithms, par-
allel computing, interconnection networks, and
design automation, in which areas he has pub-

lished more than 150 research papers and authored or coauthored
several texts including: Fundamentals of Data Structures (coauthor),
Fundamentals of Data Structures in Pascal (coauthor), Fundamentals
of Data Structures in C (coauthor), Fundamentals of Data Structures in
C++ (coauthor), Fundamentals of Computer Algorithms (coauthor),
Hypercube Algorithms: With Applications to Image Processing and
Pattern Recognition (coauthor), Concepts in Discrete Mathematics
(author), and Software Development in Pascal (author). He also edited
the proceedings of the 1987 International Conference on Parallel
Processing.

Dr. Sahni is a co-editor of the Journal of Parallel and Distributed Com-
puting and he is a member of the editorial boards of IEEE Parallel and
Distributed Technology and Computer Systems: Science and Engineer-
ing. He has served as  program committee chair and  general chair of
and has been a keynote speaker for many conferences. He is a fellow of
the IEEE, ACM, AAAS, and Minnesota Supercomputer Institute.


