
Area and Time Efficient Implementation of

Matrix Multiplication on FPGAs∗

Ju-wook Jang1, Seonil Choi2, and Viktor K. Prasanna2
1Electronic Engineering 2Electrical Engineering-Systems
Sogang University University of Southern California
Seoul, Korea Los Angeles, CA, U.S.A.

jjang@sogang.ac.kr {seonilch, prasanna}@usc.edu

Abstract

We develop new algorithms and architectures for ma-
trix multiplication on configurable hardware. These
designs significantly reduce the latency as well as the
area. Our designs improve the previous designs in [6]
and [1] in terms of the area/speed metric where the
speed denotes the maximum achievable running fre-
quency. The area/speed metrics for the designs in [6],
[1], and our design are 14.45, 4.93, and 2.35, respec-
tively, for 4 × 4 matrix multiplication. The latency
of the design in [6] is 0.57µs, while our design takes
0.15µs using 18% less area. The area of our designs is
smaller by 11%−46% compared with the best known
systolic designs based on [8] with the same latency for
the matrices of sizes 3×3−12×12. The performance
improvements increase with the problem size.

1 Introduction

Matrix multiplication is a frequently used kernel op-
eration in a wide variety of graphic, image, robotics,
and signal processing applications. Several signal and
image processing operations consist of matrix multi-
plication. Most previous implementations of matrix
multiplication on FPGAs focused on trade-offs be-
tween area and maximum running frequency [1][6].
In this paper we develop designs which provide im-
proved trade-offs between area and latency.
We significantly reduce the number of registers in-

volved in the data movement. n2 registers of 16-bit
words and n2 + 6n2/s, (1 ≤ s ≤ n) registers of 8-bit
words are involved in the data movement for n × n
matrix multiplication in [8]. Only 4n registers of 8-

∗This work is supported by the DARPA Power Aware Com-
puting and Communication Program under contract F33615-
C-00-1633 monitored by Wright Patterson Air Force Base and
in part by the National Science Foundation under award No.
99000613. Ju-wook Jang’s work is supported by Ministry of
Information and Communication, Korea.

bit words are involved in the data movement in our
design (based on Theorem 1). A closed form function
representing the area of a design is derived by incor-
porating architecture / algorithm details and FPGA
vendors’ specifications. The function enables designer
to make trade-offs between area and latency before
launching time-consuming low-level simulation.

Mencer et al [6] implemented matrix multiplication
on the Xilinx XC4000E FPGA device. Their design
employs bit-serial multipliers using Booth encoding.
They focused on trade-offs between area and max-
imum running frequency with parameterized circuit
generators. For a specific example of 4 × 4 matrix
multiplication, 954CLBs are used to achieve the max-
imum running frequency of 33 MHz.

Amira et al [1] improved the design in [6] using the
Xilinx XCV1000E FPGA device. Modified Booth-
encoder multiplication was used along with Wallace
tree addition. Emphasis was once again on maximiz-
ing the running frequency. For a specific example of
4 × 4 matrix multiplication, 296 CLBs are used to
achieve the maximum running frequency of 60 MHz.
Area/speed (the number of CLBs divided by the max-
imum running frequency) was used as a performance
metric.

We improve the previous designs in [6] and [1] in
terms of the area/speed metric. The area/speed met-
rics for the designs in [6], [1], and our designs are
14.45, 4.93, and 2.35, respectively. The design area
denotes the number of CLBs and its translation is
performed in terms of the equivalent amount of logic
on different FPGA devices. Details can be found in
Section 3.4.

Prasanna and Tsai [8] achieved the theoretical
lower bound in latency for matrix multiplication with
a design based on a linear array. Their method pro-
vides trade-offs between the number of registers and
the latency. For performance comparison, we have
implemented their design on the same target FPGA
device used in the implementation of our designs. The

Page 1



areas of our designs for 3×3−12×12 matrix multipli-
cations (based on Theorem 1 in Section 2) are smaller
by 11%−46% compared with the designs based on [8]
with the same latency. Our designs (based on Theo-
rem 2 in Section 2) also improve the performance in
terms of area×latency (AT) metric by 53.2% − 69%
for matrices of sizes 3× 3− 12× 12. Experiments on
larger matrices show that the performance improve-
ments increase with the matrix size.

The rest of the paper is organized as follows. Al-
gorithms and architectures for area and time effi-
cient implementation of matrix multiplication are
presented in Section 2. Section 3 describes imple-
mentation and compares performance with previous
designs. Section 4 concludes the paper.

2 Fast Algorithms for Matrix
Multiplication

Compared with the design in [8], our algorithm sig-
nificantly reduces the number of registers involved
in data movement. n2 registers of 16-bit words and
n2 + 6n2/s, (1 ≤ s ≤ n), registers of 8-bit words are
involved in the data movement in [8]. Only 4n regis-
ters of 8-bit words are involved in the data movement
in our design.

We present our algorithms and architectures in two
theorems and two corollaries. Pseudo-code for cycle-
specific data movement and the detailed architectures
are also provided. Theorem 1 improves the best
known algorithm for matrix multiplication [8] with
respect to the number of registers. This leads to op-
timal time complexity with a leading coefficient of 1
for matrix multiplication on a linear array. It uses
only two I/O ports, which makes our design attrac-
tive for hosts with limited I/O capability. Theorem
1 is extended for trade-offs between latency and area
using block multiplication (Corollary 1).

The second algorithm is developed to exploit fu-
ture increases in the density of FPGA devices to real-
ize improvements in latency as larger devices become
available (Theorem 2). It uses more multipliers and
I/O ports. Corollary 1 and Theorem 2 are integrated
into Corollary 2. Corollary 2 provides more compre-
hensive trade-offs between area and latency.

Theorem 1 n× n matrix multiplication can be per-
formed in n2+2n cycles using n PEs with an MACs
(multiplier-and-accumulators), 4 registers, and a lo-
cal memory of n words per PE and 2 I/O ports (Fig-
ure 3 shows a PE and Figure 1 shows an array con-
necting the PEs).

Proof: The algorithm in Figure 2 and the architec-
ture in Figure 1 and Figure 3 are devised to com-
pute cij =

Pn
k=1 aik × bkj for all i, j. aik, bkj , and

cij represent the elements of n × n matrices A,B,
and C. PEj denotes the j-th PE from the left in
Figure 1, j = 1, 2, .., n. PEj computes column j of
matrix C, c1j , c2j , ..., cnj stored in local memory. In
Phase k, column k of matrix A (aik, 1 ≤ i ≤ n) and
row k of matrix B (bkj , 1 ≤ j ≤ n) traverse the
PE1, PE2, PE3, ..., PEn in order and allow PEj to
update c0ij = c0ij + aik × bkj where c

0
ij represents the

intermediate value of cij . Once bkj arrives at PEj ,
a copy of bkj resides in PEj until a1k, a2k, a3k,...,ank
pass through PEj . We observe that the following two
essential requirements should be satisfied: 1) Since
aik stays at each PEj for just one cycle, bkj should
arrive at PEj no later than aik, for any i, 1 ≤ i ≤ n.
2) Once bkj arrives at PEj , a copy of bkj should re-
side in PEj until ank arrives. We show how the above
two essential requirements for our implementation are
satisfied with minimal number of registers. In addi-
tion, we evaluate the number of cycles to finish the
operation and the amount of local memory per PE.
1) bkj should arrive at PEj no later than aik, for

any i, 1 ≤ i ≤ n: Matrix B is fed to the lower
I/O port of PE1 (Figure 3) in row major order
(b11, b12, b13, ..., b1n, b21, b22, ...). Matrix A is fed to
the upper I/O port of PE1 in column major or-
der (a11, a21, a31, ..., an1, a12, a22, ...), n cycles be-
hind the matrix B. For example, a11 is fed to
the upper I/O port of PE1 during the same cycle
as b21 is fed to the lower I/O port of PE1. The
number of cycles needed for bkj to arrive at PEj is
(k − 1)n+ 2j − 1. aik needs n+ (k − 1)n+ i +j − 1
cycles to arrive at PEj . The requirement is satisfied
since (k − 1)n + 2j − 1 ≤ n + (k − 1)n + i +j − 1
for all i, j. For example, we show how b2n arrives at
PEn no later than a12 for c

0
1n = c01n + a12 × b2n. b2n

needs (2− 1)n +n cycles to arrive at PE1 and needs
(n−1) more cycles to move to PEn, requiring a total
of 3n − 1 cycles. a12 needs n+ (2− 1)n+ 1 cycles
to arrive at PE1 and n − 1 more cycles to move to
PEn, requiring a total of 3n cycles.
2) Once bkj arrives at PEj, a copy of bkj should

reside in PEj until ank arrives: We show how to min-
imize the number of registers to store copies of bkj
(k = 1, 2, .., n) in PEj , for each j. For this we prove
that only two registers (denoted BM and BL in Fig-
ure 3) are enough to hold bkj at PEj (to store two
consecutive elements, b(k+1)j and bkj). For example,
when b34 arrives at PE4, b14 is in BL and b24 is in BM.
If we can prove that an1 has arrived at PE4, b34 can
replace b14 in BL. Note that b14 is no longer needed
in PE4 after c

0
n4 = c0n4+an1×b14 has been performed

Page 2



using an1 which has already arrived at PE4. In gen-
eral, bkj is needed until ank arrives at PEj in the
{n + (k − 1)n + n +j − 1}-th cycle. b(k+2)j arrives
at PEj in the {(k + 1)n + 2j − 1}-th cycle. Since
(k + 1)n+ 2j − 1 > n + (k − 1)n+ n +j − 1 for all
j, k, and n, bkj can be replaced when b(k+2)j arrives
at PEj . This proves that PEj needs only two tem-
porary registers (denoted as BM and BL in Figure 3)
to hold bkj (k = 1, 2, .., n).
3) We show that n2+2n cycles are needed to com-

plete the matrix multiplication. The computation fin-
ishes one cycle after ann arrives at PEn, which is the
{n+(n−1)n+n +n−1}-th or {n2+2n−1}-th cycle.
4) Local memory of n words is used to store inter-

mediate values for a column of matrix C in each PE.

REG

MULT
SRAM

PE1 PEpPE2

Storage

On-chip storage model

Off-chip storage model

Figure 1: Family of Architectures

Figure 2: Algorithm used in the proof of Theorem 1

Corollary 1 n×n matrix multiplication can be per-
formed in (rn2 + 2r2n) cycles using n/r PEs with 1
MAC (multiplier-and-accumulator), 1 local memory
of n/r words and 4 registers per PE and 2 I/O ports
where n is divisible by r.

Proof: n × n matrix multiplication can be decom-
posed into r3 n/r×n/r matrix multiplications. Using
Theorem 1 with n replaced by n/r, the result follows.

Corollary 1 provides trade-offs between area and
latency. A smaller value of n/r reduces the number

Figure 3: Architecture of PEj used in the proof of
Theorem 1

of PEs resulting in lesser area. However, it increases
the number of cycles to complete the matrix multi-
plication.

Theorem 2 n× n matrix multiplication can be per-
formed in (n2/r+2n/r) cycles using n/r PEs with r2

MACs (multiplier-and-accumulators), r2 local mem-
ories of n/r words and 4r registers per PE and 2r
I/O ports (Figure 4 shows a PE for r=2) where n is
divisible by r.

Proof: The n× n matrices A, B, and C are divided
into r2 submatrices of size n/r×n/r, respectively. Let
Axy , Bxy , Cxy , 1 ≤ x, y ≤ r denote the submatrices.
Then we have Cxy =

Pr
k=1Axk × Bky, 1 ≤ x, y ≤

r. The basic idea is to perform Cxy =
Pr

k=1Axk ×
Bky in parallel for all x, y, 1 ≤ x, y ≤ r using r2

MACs per PE. Axk ×Bky for each x, y, 1 ≤ x, y ≤ r
is performed using an MAC per PE as in Theorem
1. However, a direct application of Theorem 1 would
require 4r2 registers per PE and 2r2 I/O ports. Later
we will show how to reduce it to 4r registers per PE
and 2r I/O ports. PEj denotes the j-th PE from
the left in Figure 1, j = 1, 2, .., n/r. PEj computes
column j of all submatrices Cxy , 1 ≤ x, y ≤ r . Each
local memory of n/r words in PEj is used to store
intermediate results for column j of a submatrix Cxy

for any x, y, 1 ≤ x, y ≤ r, requiring a total of r2 local
memories of n/r words per PE. An MAC is used to
update column j of each submatrix Cxy , 1 ≤ x, y ≤ r,
requiring a total of r2 MACs per PE.
1) For each 1 ≤ x, y ≤ r, Axk × Bky for all k, 1 ≤

k ≤ r can be performed in (n2/r+2n/r) cycles using
n/r PEs with an MAC and 4 registers per PE and 2
I/O ports: Axk ×Bky for each 1 ≤ x, k, y ≤ r can be
performed in (n2/r2 + 2n/r) cycles using n/r PEs

Page 3



Multiplier

From PEj-1 To PEj+1

A1

+

PEj

A2

BU2

BL2

BM2

BU1

BL1

BM1

+

+

+

Figure 4: Architecture of PEj used in the proof of
Theorem 2

with an MAC and 4 registers per PE and 2 I/O ports
using Theorem 1. Input of last column in submatrix
Axk to the array can be overlapped with input of the
first row in submatrix B(k+1)y for k = 1, 2, ..., r − 1.
Using the overlapping, Axk × Bky for k = 1, 2, 3..., r
can be performed in a pipelined fashion, each taking
n2/r2 cycles. At the start, n/r cycles are needed to
input the first row of submatrix B1y. At the end, after
the last column of submatrix Axr is input, n/r more
cycles are needed to move it through the array of n/r
PEs to complete the updates for Cxy . This discussion
leads to n/r+ r×n2/r2+ n/r = n2/r+2n/r cycles.
2) C0xy = C0xy + Axk × Bky for all 1 ≤ x, k, y ≤ r

can be performed in (n2/r + 2n/r) cycles using n/r
PEs with r2 MACs (multiplier-accumulators), r2 lo-
cal memories of n/r words per PE, 4r registers per
PE, and 2r I/O ports. C0xy is the intermediate results
for Cxy. In stage k, 1 ≤ k ≤ r, C0xy = C0xy+Axk×Bky

is performed in parallel for all 1 ≤ x, y ≤ r. I/O
ports, IOA1, IOA2, ..., IOAr are used to feed sub-
matrices A1k, A2k, ..., Ark to the array. I/O ports
IOB1, IOB2, ..., IOBr are used to feed submatrices
Bk1, Bk2, ..., Bkr to the array. An MAC, MACxy, is
used to perform C0xy = C 0xy + Axk × Bky for each
1 ≤ x, y ≤ r. Axk can be shared among r MACs,
MACxy, 1 ≤ y ≤ r in each PE while Bky can be
shared among r MACs, MACxy, 1 ≤ x ≤ r. This
sharing allows us to reduce the number of registers
required per PE and the number of I/O ports from
4r2 and 2r2 to 4r and 2r, respectively. A direct ap-
plication of Theorem 1 without sharing would use 4
registers per PE and 2 I/O ports to feed each MAC,

requiring 4r2 registers per PE and 2r2 I/O ports as
a total. Column j of a submatrix C0xy is updated
by MACxy and stored in a local memory of size n/r,
LMxy, for each x, y, 1 ≤ x, y ≤ r in PEj .
3) Figure 4 shows our architecture for r = 2

and Figure 5 shows the accompanying algorithm. Let
Axy, Bxy, and Cxy, 1 ≤ x, y ≤ 2 denote subma-
trices of size n/2 × n/2, respectively. In the first
stage, C

0
xy = Ax1 × B1y, are performed in parallel

for all 1 ≤ x, y ≤ 2 by feeding A11, A21, B11 and
B12 into the 4 input ports. In the second stage,
C

0
xy = C

0
xy + Ax2 × B2y, is performed in parallel for

all 1 ≤ x, y ≤ 2. Each stage takes n2/4 + n cycles
from Theorem 1. Since overlapping is possible be-
tween the end of the first phase and the start of the
second phase, the total number of cycles is n2/2+ n.
For other values of r, the proof follows using the same
idea.

For all j do in parallel

PEj shift words in A1,A2,BU1,BU2 to the right(to PEj+1)*

If (BU1 = b11kj), copy it into BM1 after moving the word in BM1 into BL1

If (A1= a11ik), REG11i=REG11i+a11ikx b11kj REG12i=REG12i+a11ikx b12kj

(b11kj is in either BM1 or BL1)

For all j do in parallel

For t=1 to n/2 do

PEj shift words in BU1 & BU2 to the right(to PEj+1)*

For t=n/2+1 to (n/2)2+n/2 do

If (BU1 = �
����

), copy it into BM1

*Matrix B11 and B12 enters the third and fourth I/O port of
PE1 in row major order

*Matrix A enters the first and second port of PE1 in column major
order n/2 cycles behind Matrix B

If (BU2 = �
����

), copy it into BM2

If (BU2 = b12kj), copy it into BM2 after moving the word in BM2 into BL2

If (A2= a21ik), REG21i=REG21i+a21ikx b11kj REG22i=REG22i+a21ikx b12kj

(b12kj is in either BM2 or BL2)

Figure 5: Algorithm used in the proof of Theorem 2

With emphasis on the number of MACs used, The-
orem 2 and Corollary 1 can be combined into Corol-
lary 2.

Corollary 2 n×n matrix multiplication can be per-
formed in (n3/m+2n2/m) cycles usingmin(m,n2/m)
PEs with max(1,m2/n2) MACs (multiplier-and-
accumulators), max(1,m2/n2) local memories of
min(m,n2/m) words, min(4, 4m/n) registers per PE
and max(2, 2m/n) I/O ports where n2 is divisible by
m and 1 ≤m ≤ n2.

Page 4



Proof: For 1 ≤ m ≤ n, the proof follows from Corol-
lary 1 by setting n/r = m. For n ≤ m ≤ n2, the
proof follows from Theorem 2 by setting nr = m.
A smaller value form reduces the number of MACs,

number of registers, and number of I/O ports result-
ing in lesser area. But it increases the number of
cycles. Corollary 2 provides trade-offs between la-
tency and area for 1 ≤ m ≤ n2. Corollary 2 provides
more comprehensive trade-offs between area and la-
tency than Corollary 1 and Theorem 2. Note that
Corollary 1 and Theorem 2 provide trade-offs between
latency and area for 1 ≤ m ≤ n and n ≤ m ≤ n2,
respectively.

3 FPGA Implementation

Our approach is to use a domain-specific modeling
technique proposed in [4]. The model is applicable
only to the design domain spanned by the family of
algorithms and the architectures to be considered.
The family represents a set of algorithm-architecture
pairs which share a common structure and similar
data movement. The domain is a set of point designs
resulting from unique combinations of algorithm and
architecture level changes. The abstraction is inde-
pendent of the commonly used levels such as gate,
register, and system level. For example, if the num-
ber of multipliers and the number of registers change
values in a domain, a domain-specific model is built
using them as key parameters. The detailed approach
can be found in [4].
We choose a Xilinx Virtex-II FPGA device to eval-

uate our designs. We estimate the area by deriving
domain-specific area functions. Each domain repre-
sents a set of architectures and algorithms spanned
by algorithm level changes. We identify key compo-
nents and the area for each component to make an
approximate estimate of the total area required. Per-
formance comparison with previous designs are made
in terms of area/speed metric and area×latency (AT)
metric.

3.1 Identify Key Components, Pa-
rameters and Domain

The family of architectures in Figure 1 and the PEs
in Figures 3 and 4 are used for our algorithms. We
identify registers of 8-bit words, MACs (multiply-
and-accumulates), SRAMs, BSRAMs [9] as key com-
ponents. SRAM is a CLB-based local memory and
BSRAM is a built-in on-chip storage. In the off-chip
model, the storage for input matrices is assumed to
be outside the FPGA. I/O ports are used for data

access. The on-chip model uses BSRAM (Block Se-
lect RAM) in the Xilinx Virtex-II FPGA devices as
on-chip storage.

We build four domains for Theorem 1, Corollary
1, Theorem 2 and Corollary 2. Only one parameter,
n, is used for Theorem 1. Two parameters, n and
r, are used for Corollary 1 and Theorem 2. n de-
notes the size of matrices. r is introduced for block
multiplication using submatrices of size n/r. Two pa-
rameters n, m are used for Corollary 2. n denotes the
size of matrices and m denotes the number of MACs.
Our algorithms ensure that the number of all the key
components depends on only two parameters.

Table 1 lists the key parameters and the number
of key components represented by the parameters for
each domain. For given matrices of size n × n, the
space spanned by the parameters forms a domain over
which trade-offs between area and latency are made.
Each unique combination of parameter values form a
point design. For example, in the domain for Corol-
lary 1 off-chip model, n = 16, r = 4 represents a
point design where 4 PEs are used for 16 × 16 ma-
trix multiplication. Each PE has 4 registers, 1 MAC
(multiplier-and-accumulator) and 1 SRAM and there
are 2 I/O ports connecting the array of PEs to off-chip
memory.

3.2 Estimation of Area for Key Com-
ponents

We estimate the area needed for implementing k
instances of each key component. For simplicity, we
assume that each component consumes same amount
of area regardless of its location. As an example,
Figure 6 shows the estimation of the area needed
for storing k 16-bit words on Xilinx XC2V1500
device with 166MHz clock.. Each sample point
represents a low level simulation to estimate the
area. The curve for registers can be approximated by
a linear function while the curve for SRAMs can be
approximated by a step function. Since SRAMs can
have only multiples of 16 × 2i words, the curve for
the area of SRAMs can be approximated as a step
function. 1 CLB in the XC2V1500 FPGA device
has 4 slices. For other components, area can be
similarly characterized. Components with non-linear
characteristic can be characterized by tables. Let
AR8(k), AR16(k), AMULT (k), ASRAM (k),ABSRAM (k),
andAIO (k) denote area estimation for 8-bit registers,
16-bit registers, 8-bit multipliers, SRAMs,BSRAMs
and I/O ports.

Page 5



Table 1: Key parameters and key components for the domains (note: BSRAMs and I/O ports are used for
on-chip model and off-chip model, respectively)
Domain Parameters No. of PEs Reg/PE MACs/PE BSRAMs I/O ports SRAMs/PE

Theorem 1 n n 4 1 2n2 2 1 of n words
Corollary 1 n, r n/r 4 1 2n2 2 1 of n/r words
Theorem 2 n, r n/r 4r r2 2n2 2r r2 of n/r words
Corollary 2 n,m min max max 2n2 max max(1,m2/n2) of

(m,n2/m) (4, 4m/n) (1,m2/n2) (2, 2m/n) min(m,n2/m) words
Note: * n is divisible by r, (1 ≤ m ≤ n2). * n2 is divisible by m.

Minimum unit size of BSRAMs and SRAMs are 1024 and 16.

For example, d2n2/1024e BSRAMsare needed to store 2n2 words.

0

100

200

300

400

500

600

0 8 16 24 32 40 48 56 64
No. of 16-bit w ords

A
re

a
(s

lic
es

)

Register

SRAM

Figure 6: Comparison of areas needed to store 16-bit
words (Xilinx XC2V1500)

3.3 Functions to Estimate Area and
Latency

Functions to represent area and latency are derived in
the domains for Corollary 1, Theorem 2, and Corol-
lary 2. The area is obtained by A =

P
iAi(ki) where

Ai(ki) denotes the area estimation for ki components
of type i in the design. The values of ki depend on the
parameters for each domain (refer to Table 1). For ex-
ample, in the domain for Theorem 2, ki is determined
by the specific values assigned to n, r. If n = 16, r = 4,
then kR8 = 16 which implies that 16 8-bit registers
are used. Note that assigning specific values to the
parameters not only determines a point design in the
domain but also determines the number of compo-
nents for each type. The latency is determined by
the algorithm and is represented using the parame-
ters chosen for each domain.
Table 2 illustrates the functions to represent area

and latency for the domain of Corollary 1. Functions
for other domains are obtained in the same way. For

the off-chip model, I/O ports are used to fetch ele-
ments from outside the FPGA. In the on-chip model,
BSRAMs of 16-bit 1024 words are used for on-chip
storage of input matrices.

3.4 Performance Comparison

Our designs improve the previous designs in [6] and
[1] in terms of the area/speed metric (Refer to Ta-
ble 3). Since each CLB has different amount of logic
on different FPGA devices used in the designs in [6]
and [1], translation should be made in the number
of CLBs used for fair comparison. 954 CLBs of the
Xilinx XC4000E FPGA device used in the design of
[6] for 4 × 4 matrix multiplication can be translated
into 477 CLBs of the Xilinx XCV1000E FPGA de-
vice used in [1]. 140 CLBs of the Xilinx XC2V1500
used in our design of 4 × 4 matrix multiplication to
achieve 166 MHz can be translated into 280 CLBs
of the Xilinx XCV1000E FPGA device used in [1].
In addition, our designs use 4 dedicated multipliers
which can be translated to 110 CLBs. After transla-
tion, the area/speed metrics for the designs in [6] and
[1] are 14.45 and 4.93, respectively. The area/speed
metric for our designs is 2.35.
We also implemented the best known linear array

based design by Prasanna and Tsai [8] on the same
FPGA device we used for our design. The implemen-
tation occupies 155 CLBs and the area/speed metric
adjusted as indicated above is (155× 2+ 110)/166 =
2.53. It is 7% higher than our design. The gap
widens as the size of the matrices grows. For ex-
ample, 12×12 matrix multiplication, our design uses
(417× 2 + 110× 3)/166 = 7.0. The design based on
[8] uses (921 × 2 + 110 × 3)/166 = 13. Our design
improves the design in [8] by 46% in terms of the
metric.
Since the latency of the design in [1] is not clearly

stated, we compare the latency of our design against
that of the design in [6] for 4 × 4 matrix multipli-

Page 6



Table 2: Functions to represent area and latency for the domain of Corollary 1
Functions For the domain of Corollary 1

Area (slices) on-chip n
rAMULT+

n
r dnr /16eASRAM+4

n
rAR8 and d2n2/1024e BSRAMs

off-chip n
rAMULT +

n
r dnr /16eASRAM + 4nrAR8 and 2 8-bit I/O ports

Latency (cycles) (r3)(n
2

r2 +
2n
r + 1)

Table 3: Area/speed comparison of previous designs against our designs for 4× 4 matrix multiplication
Design FPGA Area Area Speed Area/Speed Latency

(CLBs) (equivalent) (MHz) (µs)

Mencer et al [6] XC4000E 954 477 33 14.45 0.57
Amira [1] XCV1000E 296 296 60 4.93 n/a

Proposed (Theorem 1) XC2V1500 140 390 166 2.35 0.15
Prasanna and Tsai [8] XC2V1500 155 420 166 2.53 0.15

cation. The latency of the design in [6] is 19 cy-
cles × 1/33MHz = 0.57µs. Our design takes 25 cy-
cles × 1/166MHz= 0.15µs. One cycle is added for
flushing the 2-stage pipeline multipliers used in our
design(42+2×4+1 = 25). The equivalent area used
by our design is smaller by 18% compared with that
of the design in [6].

For sizes of the matrices other than 4× 4, no data
is provided in [6] and [1]. Table 4 compares area and
latency of our designs (based on Theorem 1 and The-
orem 2) against the design in [8] for various sizes of
matrices. The area of our designs based on Theorem
1 is smaller by 11%−46% compared with the designs
based on [8] with the same latency. The gap widens as
the size of the matrices grows. Our designs based on
Theorem 2 reduce the latency with modest increase
in area as compared with the designs based on [8] and
Theorem 1. Comparison of performance based on the
AT (area×latency) metric shows that designs based
on Theorem 2 are better than the designs based on [8]
by 53.2−69% for matrices of sizes 3×3−12×12. Fig-
ure 7 shows the trade-off curve between latency and
area. Experiments on larger matrices show that the
reduction becomes larger with increase in the sizes
of matrices. Details are omitted due to space limita-
tions.

4 Conclusions

New algorithms and architectures were developed for
matrix multiplication to provide improved trade-offs
between area and latency as compared with the state-
of-the-art FPGA-based designs. A function to rep-
resent the impact of algorithm change on the total
area is derived to enable the designer to understand
the trade-offs before time consuming low level sim-

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1 1.2
Latency (usec)

E
qu

iv
al

en
ta

re
a

(C
LB

s)

n=3

n=6

n=9

n=12

Figure 7: Trade-offs between latency and area for ma-
trices of chosen sizes

ulation. Low level simulation using Xilinx ISE 4.1i
and Mentor Graphics ModelSim 5.5e and recent Xil-
inx XC2V1500 as a target FPGA were performed to
evaluate the chosen designs.

References

[1] A. Amira, A. Bouridane, and P. Milligan,
"Accelerating Matrix Product on Reconfig-
urable Hardware for Signal Processing," Field-
Programmable Logic and Applications (FPL),
pp. 101-111, 2001.

[2] A. Bogliolo, L. Benini, and G. Micheli,
"Regression-based RTL Power Modeling," ACM
Transactions on Design Automation of Elec-
tronic Systems, Vol. 5, no. 3, 2000.

Page 7



Table 4: Performance comparison of various designs against the Xilinx design.
Design Metric Matrix size

3× 3 6× 6 9× 9 12× 12
Proposed latency 0.09 0.29 0.60 1.01

(Theorem 1) area 254 558 837 1,116

AT 22.9 161.8 502.2 1127.2

latency 0.03 0.145 0.2 0.51

area r=3 444 r=2 843 r=3 1767 r=2 1686

AT 13.3 122.2 353.4 859.9

latency 0.1 0.07 0.34

area n/a r=3 1178 r=9 4957 r=3 2356

Proposed AT 117.8 347.0 801.0

(Theorem 2) latency 0.05 0.25

area n/a r=6 2233 n/a r=4 3051

AT 111.7 762.8

latency 0.17

area n/a n/a n/a r=6 4466

AT 759.2

latency 0.08

area n/a n/a n/a r=12 8761

AT 700.9

Design based latency 0.09 0.29 0.60 1.01

on [8] area 326 795 1,427 2,172

AT 29.3 238.5 884.7 2258.9

Note: The unit of latency is µ sec. The area is the number of equivalent CLBs.
AT is the area×latency metric.

[3] B. Bass, "A Low-Power, High-Performance,
1024-Point FFT Processor," IEEE Journal of
Solid-State Circuits, Vol. 34, no. 3, pp. 380-387,
1999.

[4] S. Choi, J. Jang, S. Mohanty, and V. K.
Prasanna, "Domain-Specific Modeling for Rapid
System-Wide Energy Estimation of Reconfig-
urable Architectures," International Conference
on Engineering of Reconfigurable Systems and
Algorithms (ERSA), 2002.

[5] W. Luk, P. Andreou, A. Derbyshire, F. Dupont-
De-Dinechin, J. Rice, N. Shirazi, and D. Siganos,
"A Reconfigurable Engine for Real-time Video
Processing," Field-Programmable Logic and Ap-
plications (FPL), pp. 169-178, 1998.

[6] O. Mencer, M. Morf, and M. Flynn, "PAM-Blox:
High Performance FPGA Design for Adaptive
Computing," Proc. PDCS, 2001.

[7] P. Master and P. M. Athanas, "Reconfigurable
Computing Offers Options For 3G," Wireless
Systems Design, pp. 20-23, 1999.

[8] V. K. Prasanna Kumar and Y. Tsai, "On Syn-
thesizing Optimal Family of Linear Systolic Ar-
rays for Matrix Multiplication," IEEE Transac-
tions on Computers, Vol. 40, no. 6, 1991.

[9] Xilinx Application Note, Virtex-II Series
and Xilinx ISE 4.1i Design Environment,
http://www.xilinx.com, 2001.

[10] http://www.xilinx.com.

Page 8


