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An Optimal Multiplication Algorithm on
Reconfigurable Mesh

Ju-wook Jang, Heonchul Park, and Viktor K. Prasanna, Fellow, IEEE

Abstract —An O(1) time algorithm to multiply two N-bit binary numbers using an N ¥ N bit-model of reconfigurable mesh is shown. It
uses optimal mesh size and it improves previously known results for multiplication on the reconfigurable mesh. The result is
obtained by using novel techniques for data representation and data movement and using multidimensional Rader Transform. The
algorithm is extended to result in AT 2  optimality over 1 £ £T N  in a variant of the bit-model of VLSI.

Index Terms —Integer multiplication, reconfigurable mesh, optimal algorithm, area-time trade off, VLSI architecture.

——————————   ✦   ——————————

1 INTRODUCTION

HE reconfigurable mesh is a two-dimensional mesh of
processors connected by reconfigurable buses [17].

Though the buses outside the Processing Elements (PEs) are
fixed, the internal connection between the I/O ports of each
PE can be reconfigured by individual PEs during the exe-
cution of algorithms.

The reconfigurable mesh captures salient features from a
variety of sources, including the Content Addressable Ar-
ray Parallel Processor (CAAPP), the Configurable Highly
Parallel Computer (CHiP), the polymorphic-torus network,
and the bus automaton. It consists of an array of processors
interconnected by a reconfigurable bus system, which can
be used to dynamically obtain various interconnection pat-
terns between the processors. Several reconfigurable meshes
are being built. The Image Understanding Architecture
(IUA) is a multilevel system designed for supporting re-
search in real-time image understanding and knowledge-
based computer vision [32], [33], [34]. The lowest level of
the IUA is the CAAPP, a 512 ¥ 512 square grid of bit serial
processors intended to perform low-level image processing.
Each CAAPP processor is connected to its four nearest
neighbors, as in a standard mesh. In addition, the CAAPP
provides a coterie network for communication, which con-
sists of a grid-shaped bus and a set of locally controllable
switches. The DARPA Integrated Image Understanding
Benchmark has been performed on the IUA [35]. A 1/64th
prototype of the system has been built at the Hughes Re-
search Labs. Another reconfigurable mesh having 512 PEs
has been built by NEC [13]. This architecture consists of an
array of processors, and a message passing network. Each
processor consists of a DSP chip. The message passing net-

work is an array of message routing chips. The message
routing chip, called the Gate Chip, provides connections
between the four I/O ports and the DSP chip at the grid.

Parallel algorithms have been developed on the recon-
figurable mesh for graph problems [17], [18], [29], for image
processing [11], [19], [18], for geometric problems [25], for
arithmetic problems [3], [31], and for sorting [3], [8], [15],
[20], [25], [30].

In this paper, we show that multiplication of two N bit
numbers can be performed in O(1) time on an N ¥ N bit-
model of reconfigurable mesh. Previously known result for
constant time multiplication on the reconfigurable mesh uses
N2 ¥ N2 PEs [31]. We also show that our result can be ex-
tended to provide area-time tradeoffs to satisfy AT2 optimal-
ity over 1 £ £T N  in a variant of the bit-model of VLSI.

The rest of this paper is organized as follows. In Section 2,
a brief description of the architecture is given along with
illustration of some basic operations. Section 3.1 discusses
Rader Transform. The multiplication algorithm is described
in detail in Section 3.2. Section 3.3 shows area-time trade-
offs and Section 3.4 discusses multiplication on related re-
configurable mesh models. Section 4 concludes this paper.

2 ARCHITECTURE AND BASIC OPERATIONS

The word-model of the reconfigurable mesh has been de-
fined earlier [17]. In this paper, we employ the bit-model.

2.1 Bit-Model of Reconfigurable Mesh
A 6 ¥ 6 reconfigurable mesh is shown in Fig. 1. PE(i, j) de-
notes the processing element at the intersection of the ith
row and the jth column. Each PE has O(1) words of storage.
Each word consists of O(1) bits. The Processing Elements
(PEs) can perform basic arithmetic and logic operations on
O(1) bits of data in unit time. Each PE has four I/O ports
(E, W, N, S). The internal connection between the four ports
of a PE can be configured to form subbuses of various
shapes during the execution of of an algorithm. A subbus is
a collection of pieces of bus which are connected together.
Fig. 2 shows some possible connection patterns. For example,
{SW, NE} represents the configuration in which S(South) port
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is connected to W(West) port while N(North) port is con-
nected to E(East) port. Through any I/O port, each PE can
broadcast to or read from the subbus connecting the I/O
port. At most, one processor connected to a subbus is al-
lowed to broadcast to the subbus to which it is connected at
any given time. Each subbus can carry one of two signals: a
1-signal or a 0-signal. The presence of a 1-signal at a port is
represented by a dark circle. Unit time is assumed for broad-
casting on the buses, for performing an arithmetic or logic
operation on O(1) bits of data or for reconfiguring the con-
nections among the ports in the PEs. Throughout this paper,
reconfigurable mesh is used to denote the above bit-model.

Fig. 2. Some patterns of internal connection among the I/O ports of a PE.

2.2 Number Representations
Input data as well as intermediate results can be repre-
sented using the I/O ports of a group of PEs (see Fig. 3 for
three representations of number 3):

• BIN Representation: Uses log N PEs to represent a
number in [0, N - 1] with a particular (N, S, E, or W)
port of the kth PE having a 1-signal iff the kth bit of the
log N bit representation of number i is equal to 1, 0 £ k
£ log N - 1.1

• 1UN Representation: Uses N PEs to represent a num-
ber i in [0, N - 1] with a particular port of the first i + 1

PEs having a 1-signal and the corresponding port of
the rest of the PEs having a 0-signal.

• 2UN Representation: Uses N PEs to represent a num-
ber i in [0, N] with a particular port of a set of i PEs
having a 1-signal and the corresponding port of the
rest of the PEs having a 0-signal. Note that the 2UN
representation of a number is not unique. Usually, the
2UN representation is a given 0/1 sequence from
which the number of 1s is to be counted during the
execution of the algorithm.

2.3 Some Operations on the Reconfigurable Mesh
A number of operations can be performed quickly on the
reconfigurable mesh. Broadcast of data along the rows or
columns can be performed in O(1) time. A permutation on

Fig. 1. A 6 ¥ 6 reconfigurable mesh.

1. All logarithms in this paper are to base 2. Fig. 3. Three representations of number 3.
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N data in any row or column of an N ¥ N reconfigurable
mesh can be performed in O(1) time. Given an integer in
[0, N - 1] in the 2UN representation, it can be converted
into its 1UN representation in O(1) time using an N ¥ N bit-
model of reconfigurable mesh. For completeness, the con-
version technique is described in the following:

LEMMA 1. Given a 2UN representation of an integer in [0, N + 1]
in a row, it can be converted to its 1UN representation in
O(1) time using a N ¥ N reconfigurable mesh.

Step 1: Let PE(i, j), two(k) and one(l) represent the (i, j)th PE,
the kth bit of a given 2UN input and the lth bit of its 1UN
output, respectively, where 0 £ i, j, k, l £ N - 1. Initially,
two(k) is given in PE(0, k), 0 £ k £ N - 1.

Step 2: PE(0, k) broadcasts two(k) along column k, 0 £ k £
N - 1.

Step 3: All PEs receiving a 1-signal in Step 2 set their con-
figuration to {SW, EN} and the PEs receiving a 0-signal
set their configuration to {EW, N, S}

Step 4: PE(0, 0) broadcasts a 1-signal to its W port. Also, if
PE(0, k) has two(k) = 1, then it broadcasts a 1-signal to its
N port.

Step 5: Check the E port of PE(u, N - 1), 0 £ u £ N - 1 for 1 -
signal. The output one (l) is represented by the E port of
the PE(l, N - 1), 0 £ l £ N - 1. For example, if two(k), 0 £ k
£ N - 1 is 01011 then the E port of PE(u, N - 1), 0 £ u £ 3
will have a 1-signal, and the rest of the ports will have a
0-signal. This is the 1UN representation of 3.

Addition of two k-bit binary numbers can be performed in
O(1) time using a 1 ¥ k reconfigurable mesh as follows (see
Fig. 4). Assume PE(0, i) has ai, bi, 0 £ i £ k - 1. PE(0, i) does
the following:

• if (ai, bi) = (1, 1) set configuration to {E, W, N, S} and
broadcast a 1-signal on its E port.

• if (ai, bi) = (0, 0) set configuration to {E, W, N, S} and
broadcast a 0-signal on its E port.

• if (ai, bi) = (1, 0) or (0, 1) set configuration to {EW, N, S}.

Now, apply a 0-signal at the W port of PE(0, 0). PE(0, i),
0 £ i £ k - 1, sets ci = 1 if a 1-signal is received at its W port.
PE(0, i) computes output zi = ai ≈ bi ≈ ci, 0 £ i £ k - 1.

Fig. 4. Addition of two k-bit numbers for k = 5.

Given N k-bit binary numbers, 1 £ k £ N, the addition
problem is to add these numbers into a k + log N bit binary
number. Wang, Chen and Li [31] solve this problem in O(1)

time on an Nk ¥ Nk reconfigurable mesh. Ben-Asher, Peleg,
Ramaswami and Schuster [3] show an algorithm which
adds N N-bit numbers in O(log* N) time on an N ¥ N ¥ N
(three-dimensional) reconfigurable mesh. Here, for the sake
of completeness, we show an O(1) time solution to the addi-
tion problem on N ¥ Nk reconfigurable mesh.

LEMMA 2. Given N k-bit binary numbers in the BIN representa-
tion, 1 £ k £ N, these numbers can be added in O(1) time
on an N ¥ Nk reconfigurable mesh.

PROOF. Without loss of generality, assume N is a power of
2. Let the N k-bit numbers be Xi, 0 £ i £ N - 1. These
numbers are represented as follows:

Xi = xi,0 + xi,12
1 + xi,22

2 + º + xi,k-12
k-1,

xi,j Œ {0, 1}, 0 £ j £ k - 1.

Then, the sum of these numbers can be represented
using k + log N bits as:
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The output zj, 0 £ j £ k - 1 + log N, can be computed as
follows:
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The mod 2 and div 2 functions give the remainder and
the quotient respectively, when the input number is
divided by two. If we can compute the carries, Cj, for

1 £ j £ k - 1+ log N, in O(1) time, then the k + log N bit
representation of the sum, zj, 0 £ j £ k - 1 + log N, can

be obtained in O(1) time. Initially, input xi,j is given in
PE(i, j2N) as shown in Fig. 5. At the end of the com-
putation, the output zj will be available in PE(0, j), 0 £
j £ k - 1 + log N.

For ease of explanation we use a 2N ¥ 2Nk recon-
figurable mesh. The mesh is partitioned into k blocks
of size 2N ¥ 2N. Let Bj, 0 £ j £ k - 1, denote a block of

size 2N ¥ 2N. Note that Bj consists of PE(u, 2Nj + w),

0 £ j, w £ 2N - 1. Bj computes Cj+1 = (Sj + Cj) div 2,

where Sj is given in 2UN representation as x0,j, x1,j, º,

xN-1,j. Cj is represented in 1UN format. Initially, Sj is

stored in PE(0, u), 0 £ u £ N - 1 in block j. Cj is stored in

PE(u, 0), 0 £ u £ N - 1. The left half (of size 2N ¥ N) of
the block computes (Sj + Cj) in O(1) time. The tech-
nique to convert a 2UN representation into its 1UN
representation (Lemma 1) is used for this computa-
tion. The output in 1UN representation is available in
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column N - 1. The right half (size 2N ¥ N) receives the
(Sj + Cj) as input and outputs (Sj + Cj) div 2 in 1UN
representation. The right half of a block consisting of
PEs in column N through 2N - 1 is configured such
that PE(u, N) is connected to PE(u/2, 2N - 1) only if u
is even, 0 £ u £ N - 1. Note that such a connection re-
alizes the div 2 function when the input is provided in
1UN representation. For this, the PEs in the right half
of a block are configured as follows:

• {EW, S, N} if u £ w - N,
• {NW, SE} if u > w - N.

As a result, 1 - signal in PE(u, N), u even, is propa-
gated to PE(u/2, 2N - 1). For example, if column N
has 1111111100 (7 in 1UN), then the output in column
2N - 1 would be 1111000000 (3 in 1UN).

Fig. 6 shows an example where Cj = 3, Sj = 2. Ini-
tially, Sj(101) is in PE(0, 0), PE(1, 0), PE(2, 0). It is first
routed to PE(0, 0), PE(0, 1), PE(0, 2). PE(0, 0) and PE(0, 2)
broadcast 1-signal while PE(1, 0) broadcasts 0-signal
along its column by configuring PE(u, w), 0 £ u £ 5,
0 £ w £ 2 to {NS, W, E}. Thus, PE(u, 0) and PE(u, 2),
0 £ u £ 5, have 1-signal and PE(u, 1), 0 £ u £ 5, have
0-signal. PEs receiving 1-signal set their configuration
to {SW, NE} while the PEs receiving 0-signal set their
configuration to {EW, N, S} as shown in Fig. 6. PE(u,
w), 0 £ u £ 5, 3 £ w £ 5 implement the div 2 function.

Now, Cj is applied at the leftmost column (i.e., at
the W port of the PEs in the leftmost column.) In
this example, 1-signal is input at the W port of
PE(u, 0), 0 £ u £ 3, while 0-signal is input at the W
port of PE(u, 0), 4 £ u £ 5. Sj in 2UN is input at the N

port of PE(0, u), 0 £ u £ 2. Then, Cj+1 in 1UN repre-

sentation is available in PE(u, 5), 0 £ u £ 5. Thus, Cj+1 =

(Cj + Sj) div 2 can be computed in O(1) time using a

2N ¥ 2N reconfigurable mesh.
Let Bj be the 2N ¥ 2N reconfigurable mesh config-

ured to compute Cj+1 = (Cj + Sj) div 2. Bj, 0 £ j £ k - 1

are cascaded to compute Cj+1, 0 £ j £ k - 1 in parallel.

Inputs to the cascade are Sj, 0 £ j £ k - 1 and C0(= 0).

Then, Cj+1 in 1UN representation is available at the

right most column of Bj, for 0 £ j £ k - 1.
Now we describe how we can obtain output zj =

(Cj + Sj) mod 2. In Fig. 6, (Cj + Sj) in 1UN representation
is available in PE(u, 2), 0 £ u £ 5. Assume that PE(u,
N - 1) knows if u is even (1 bit is sufficient to repre-
sent this information).

If Cj + Sj = r0, then PE(r0, 2) becomes active while
all other PEs are inactive. This can be done in parallel
by checking adjacent PEs along column N - 1. If r0 is

odd, then PE(r0, N - 1) broadcasts 1-signal along its

Fig. 5. Initial distribution of the inputs used in Lemma 2.
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column, otherwise it broadcasts 0-signal. PE(0, N - 1)
will have either 1-signal or 0-signal on its N port. This
represents zj = (Cj + Sj) mod 2. Now zj, 0 £ j £ k - 1 can

be routed in O(1) time to PE(0, j), 0 £ j £ k - 1.
By setting Sj = 0 for k £ j £ k - 1 + log N, zj for k £ j £

k - 1 + log N can be easily determined once Ck is
known. zj, 0 £ j £ k - 1 + log N form the BIN repre-
sentation of the output. �

3 THE MULTIPLICATION ALGORITHM

Given two N bit binary numbers, X = x0 + x12 + x22
2+ º +

xN-12
N-1, Y = y0 + y12 + y22

2+ º + yN-12
N-1, the multiplication

problem is to compute the 2N-bit product of X and Y. This

can be performed by computing X yi
i

i

N
¥

=

-Â 2
0

1
. For ease of

explanation, we assume N is a power of 2. Wang, Chen and
Li [31] solve this problem in O(1) time on an N2 ¥ N2 recon-
figurable mesh. Their approach generates the N 2N-bit

product terms and sums them up using parallel computa-
tion of carries. They used a large reconfigurable mesh to
avoid conflicts of bus signals while computing the carries.
Such conflicts occur due to backward propagation of sig-
nals over buses when blocks computing carries are cas-
caded. Note that Lemma 2 leads to:

COROLLARY 1. Multiplication of two N-bit numbers can be per-
formed in O(1) time on a N ¥ N 2  reconfigurable mesh.

First, we briefly review Rader Transform (RT) which is
used in our algorithm to perform cyclic convolution.

3.1 Rader Transform
It is known that RT, which is a transform in a finite field
(and more generally in a ring), has cyclic convolution property
and is without roundoff error [23]. The ring is closed under
addition and multiplication modulo some integer Ft of the

form 22 1t + .  Given input x(n), 0 £ n £ N - 1, where x(n) is an
element in the ring, the RT given by:

X k x n F k Nnk

n

N

t1 6 0 5 2 7= = -
=

-

Â a
0

1

0 1 1mod , , , , .  K (1)

The inverse RT is defined as:

x n X k F n Nm nk

k

N

t0 5 1 6 2 7= = -- -

=

-

Â2 0 1 1
0

1

a mod , , , , .K (2)

Note that

F t Nt
tt

= + £ +2 1 22 1, for some integer ,  and . (3)

N is the least positive integer such that aN  = 1 mod(Ft) and

a is a power of 2 and is an Nth root of 1 in the ring. Note

that a-1 = aN -1 mod Ft and 2 22- -= -m m
t

t

mod F .

3.1.1 Diminished-1 Notation
In computing RT in the ring of integers modulo 2B

 + 1,
arithmetic modulo 2B

 + 1 is performed. B + 1 bits are needed
to represent a number in the ring. If the result r from an
arithmetic operation is greater than 2B, r mod (2B

 + 1) should
be computed to generate a valid output. To avoid this extra
modular computation, Agarwal and Burrus [2] limit their
realization to B-bit arithmetic in which only those operands
in the range of [0, 2B

 - 1] are correctly represented. This in-
volves some quantization error when 2B occurs as an oper-
and. In order to overcome this problem, we employ the
diminished-1 notation [12]. By using this notation, we can
perform modular arithmetic as simple as in [2] without any
quantization error. In the diminished-1 notation, number i,
1 £ i £ 2B, is represented by the binary representation of
number i - 1 and 0 is represented by 2B. Thus, 0 is repre-
sented by a 1 in the (B+1)th bit position. The result of an
addition and multiply operation, where one of the oper-
ands is zero, can be obtained without actual computation.
First, check if one of the operands is zero by inspecting the
(B + 1)th bit. Note that the bits are numbered 1 to B + 1,
starting from the right-most bit. If so, output the result
without any further computation. If not, since both oper-
ands can be represented using only least significant B bits,

Fig. 6. Computation of Cj+1 = (Cj + Sj) div 2 for Cj = 3 and Sj = 2.
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perform the desired computation using B bits. Using this
approach, we can show:

LEMMA 3. Given numbers in the ring of integers modulo 2B
 + 1

represented using the diminished-1 notation, addition of
two numbers or multiplication by a constant 2k in the ring
of integers modulo 2B + 1, 0 £ k £ B - 1, can be performed
in O(1) time on a B ¥ B reconfigurable mesh.

PROOF. For ease of explanation we use a (B + 1) ¥ (B + 1)
mesh. Let X, Y, Z be integers represented in the di-
minished-1 notation using B + 1 bits. Let k be a constant
such that 0 £ k £ B - 1.
• X + Y modulo (2B + 1):

If the (B + 1)th bit of either X or Y is 1, inhibit the
addition and the other addend is the desired sum. If
the (B + 1)th bit of both X and Y are 0, ignore the
(B + 1)th bit and add the remaining B bits of each
operand. Complement the carry and add it to the
least significant B bits of the sum. For example,
suppose B = 4, X = 4, and Y = 6. In the dimin-
ished-1 notation, X = 00011 and Y = 00101. Addi-
tion of 0011 and 0101 gives carry 0 and sum 1000.
Complementing the carry and adding it to the sum
gives 10(01001). The above processing can be per-
formed in O(1) time on 1 ¥ (B + 1) reconfigurable
mesh by using the technique shown in Fig. 4.

• Z ¥ 2k modulo (2B + 1):
Initially, the (B + 1) bits of Z are assumed to be in
PE(0, j), 0 £ j £ B. If the (B + 1)th bit of Z is 1, the
multiplication is inhibited and the result is zero.
Otherwise, left shift Z by k bits ignoring the (B + 1)th
bit and add the complement of the k shifted-out
bits. For example, suppose B = 4, Z = 11 and k = 3.
In the diminished-1 notation, Z is represented as
01010. Left shift of 1010 by 3 bits gives 00000.
Complementing the three shifted-out bits (101) and
adding it to 00000 results in 00010 which repre-
sents three in the diminished-1 notation. Note
that 11 ¥ 23 modulo 24 + 1 = 3. Since any permu-
tation of (B + 1) bits stored in PE(0, j), 0 £ j £ B can
be performed in O(1) time on a (B + 1) ¥ (B + 1) re-
configurable mesh, the above processing can be
performed in O(1) time. �

Combining Lemma 2 and Lemma 3, we have:

LEMMA 4. Given 2P points in the BIN representation in a row,
the 2P-point RT (and its inverse) in the ring of integers

modulo 2B + 1 can be performed in O(1) time on a P2B ¥
PB reconfigurable mesh, where P £ B and B is a multiple of
P and a power of 2.

PROOF. Let a be the 2Pth primitive root of unity, i.e., 2P is
the smallest integer such that a 2 P = 1 mod (2B

 + 1).

Note that 22B mod (2B
 + 1) = 1. Thus, a = 22B/2P. The

corresponding transform matrix is:

T =

�
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Let x denote an input vector of 2P integers:
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Similarly, let X denote the RT of x. Note that X is a
vector of 2P integers. Then, X = Tx computed using
arithmetic in the ring of integers modulo 2B + 1. Direct

computation of Tx would require 4P2 multiplications

of (B + 1)-bit operands and 2P(2P - 1) additions. For
ease of explanation, we will use a 4P2B ¥ 2PB recon-
figurable mesh. Initially, the BIN representation of
x( j ) is stored in PE(0, jB + w), 0 £ w £ B-1 as shown in
Fig. 7a. Partition the mesh into RM(i), 0 £ i £ 2P - 1.
RM(i) is a submesh of size 2PB ¥ 2PB which consists
of PE(i2PB + u, w), 0 £ u, w £ 2PB - 1. We will show

that X i x jij B

j

P0 5 1 6 4 9= +
=

-Â a  mod 2 1
0

2 1
 can be com-

puted in RM(i) in O(1) time. x( j ), 0 £ j £ 2P - 1 (a total
of 2PB bits) is broadcast to the 2PB PEs in the top row
of each RM(i), 0 £ i £ 2P - 1. RM(i) is subdivided into
BM(i,j), 0 £ j £ 2P - 1. BM(i,j) is of size 2PB ¥ B and con-
sists of PE(i2PB + u, jB + w), 0 £ u £ 2PB - 1, 0 £ w £ B - 1
(see Fig. 7b). At this time, x(j) is in the top row of B(i, j).

Observe that aijx( j) mod (2B
 + 1) can be computed

in BM(i, j) in O(1) time. Since a2P
 = 1, aij can be re-

placed by ak , where, 0 £ k £ 2P - 1. Since a = 22B/2P,

for any k, 0 £ k £ 2P - 1, ak = 2k¢ where 0 £ k¢ £ 2B - 1. k¢
can be determined a priori (independent of input x( j )).

Now, x( j ) in BIN representation is converted into

diminished-1 notation and multiplied by 2k¢ in modulo

(2B
 + 1) arithmetic using Lemma 3. The resulting

aijx( j ) mod (2B
 + 1) in diminished-1 notation is con-

verted into BIN representation. Recall that 0 £ aijx( j )

mod (2B
 + 1) £ 2B. Actually, we need B + 1 PEs to rep-

resent aijx( j ) mod (2B
 + 1) in BIN representation. But

this can be handled without increasing the asymptotic
time complexity. For ease of explanation, assume that
it is represented by B bits. Let x ¢(j) denote aijx( j ) mod

(2B
 + 1) in BIN representation. This is computed in

BM(i, j). Then, the B bits of x ¢( j ) are routed to PE(i2PB
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+ j, w2P), 0 £ w £ B - 1 (see Fig. 7c). This is possible
since RM(i) is of size 2PB ¥ 2PB and x¢(j), 0 £ j £ 2P - 1
are stored in the top row of RM(i). Note that the total
number of bits to be routed is 2PB. Now the summa-
tion of x ¢( j ), 0 £ j £ 2P - 1 can be performed in O(1)
time using Lemma 2. The result is in BIN representa-
tion. Computing X(i) modulo (2B

 + 1) can be per-

formed in O(1) time using RM(i), 0 £ i £ 2P - 1. �

3.2 Outline of the Multiplication Algorithm
Let Ci, 0 £ i £ 2P - 1 be the cyclic convolution of two se-
quences Ai, Bi, 0 £ i £ 2P - 1. Then Ci is defined by:

C A B i Pi i k k
k

P

= £ £ --
=

-

Â , 0 2 1
0

2 1

where Ai, Bi are periodically extended outside their original
domain.

Multiplication of two N-bit integers is reducible to the
cyclic convolution of two integer sequences of length 2P

with each integer in [0, 2N/P
 - 1]. We choose P to be N3/4,

the reason for which will become clear during the course of
the discussion. The cyclic convolution of two integer se-
quences can be performed by the following three steps [2].

1) Compute the transform of each sequence.
2) Compute the product of the two transforms. (i.e., mu-

tiply the corresponding elements.)
3) Obtain the inverse transform of the product.

where transform is any transform satisfying cyclic convolu-
tion property. A transform is said to have the cyclic convolu-
tion property iff the transform of the cyclic convolution of
the two sequences is equal to the product of the transforms
of the two individual sequences. To avoid round-off errors,
the transform is computed in a finite field of integers. The
difficulty in using a finite field is in finding a suitable field
with an Nth root of unity such that the size of the transform

Fig. 7. Data movement in the proof of Lemma 4.
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is proportional to the size of the finite field. If we can em-
ploy such a field, the transform can be computed using
words of length proportional to log N.

We choose 2N3/4-point Rader Transform(RT) for the
transform in Step 1 above. As discussed earlier, N-point RT
is a transform in a finite field of integers modulo an integer
of the form 2B + 1 and has a power of 2 as the kernel (or Nth

root of unity), where N/2 £ B [23]. RT is chosen in spite of
its demand for larger word length requirement (O(N)) be-
cause of the following two merits. First, there is a system-
atic and simple way to find a finite field which has an Nth
root of unity. Second, since every element of the transform
matrix is a power of 2, multiplication of an input integer by
an element of the matrix can be reduced to shift operations.
To perform arithmetic modulo 2B + 1 efficiently, diminished-1
notation [12] is used. Lemma 3 (in Section 3.2) shows how
addition of two numbers and multiplication by a power of
2 in the ring of integers modulo 2B + 1 can be performed on
the reconfigurable mesh. In the proof of Lemma 4, detailed
data movement is shown for the computation of 2P-point
RT in the ring of integers modulo 2B + 1 in O(1) time on

P2B ¥ PB reconfigurable mesh. Using Lemma 4, computa-

tion of 2N3/4-point RT in O(1) time would require a mesh of

size N9/4 ¥ N6/4. Reducing the multiplication problem to con-

volution of 2 N  integers in 0 2 1
1 2

,
/N -�

! 
"
$#

 (i.e., choosing

P N=  instead of N3/4), does not work either. The prob-
lem is with the summation of resulting N  numbers(O(N)
bits in total) to obtain an element of the output vector. In
order to use Lemma 2, these O(N) bits should be permuted
in O(1) time on an N N¥  mesh to obtain the initial input
distribution shown in Fig. 5. This is impossible due to the
narrow bandwidth of the mesh.

To avoid the above problems, we decompose the 2N3/4-
point (one-dimensional) cyclic convolution into four-
dimensional cyclic convolution, where the convolution in
each dimension is performed on 8N9/16 groups of 2N3/16

points(8N9/16 convolutions with each convolution on 2N3/16

points). The reason we have chosen P = N3/4 is that word

length of N/P(= N1/4) is large enough to compute each

2N3/16-point convolution. The details are shown in Lemma 6.
First, we begin with computing the cyclic convolution.

LEMMA 5. The cyclic convolution of two integer sequences of

length 2P with each integer in [0, 2B
 - 1] represented using

the BIN notation can be performed in O(1) time on a P2B ¥
PB reconfigurable mesh, where P £ B £ P2 and B is a mul-
tiple of P and is a power of 2.

PROOF. Let Ci, 0 £ i £ 2P - 1 be the cyclic convolution of two
sequences Ai, Bi, 0 £ i £ 2P - 1. Then Ci is defined by:

C A B i Pi i k k
k

P

= £ £ --
=

-

Â ,
0

2 1

0 2 1

where Ai, Bi are periodically extended outside their

original domain. Since RT has the cyclic convolution
property, the cyclic convolution can be computed
using RT. Since Ai, Bi Œ [0, 2B - 1], it is clear that Ci Œ

[0, 23B-1
 - 1]. In the ring of integers modulo 23B + 1,

when two integer sequences Ai and Bi are convolved,

the output integer sequence Ci is congruent to the

convolution of Ai and Bi modulo 23B + 1. In the ring of

integers modulo 23B + 1, conventional integers can be
represented unambiguously if their absolute value is
less than (23B + 1)/2. Since the input sequences Ai, Bi

are scaled such that Ci never exceeds (23B + 1)/2, we
would get the same result by implementing the con-
volution in the ring of integers modulo 23B + 1 as that
obtained with the usual arithmetic. Based on this and
the cyclic convolution property of RT, Ci can be ob-
tained by the following three steps:

Step 1. Compute RT of Ai, Bi in the ring of integers

modulo 23B+1.
Step 2. Compute the product of the two RTs.
Step 3. Compute the inverse RT of the product.

From Lemma 4, Step 1 can be performed in O(1) time
on a 3P2B ¥ 3PB mesh. 2P multiplications of 3B-bit
numbers are needed in Step 2. From Corollary 1,
multiplication of two 3B-bit numbers can be per-
formed in O(1) time on a 9B2 ¥ 3B mesh. Since P2 ≥ B,
Step 2 can be performed in O(1) time on a 9P2B ¥ 6PB
mesh. Step 3 can be performed similar to Step 1. �

It is known that one-dimensional cyclic convolution of
two sequences of P numbers can be replaced by d dimen-

sional cyclic convolution of two D D D
d

¥ ¥ ¥ 
 times

K
6 744 844

 arrays,

where D = (2d-1P)1/d. The 2d-1P numbers are the original P
numbers padded with 0s to allow cyclic convolution along
each of the d dimensions. For details, refer to [1]. For ease of

explanation, we assume (2d-1P)1/d to be an integer. Cyclic
convolution along each dimension can be performed by

(2d-1P)1-1/d cyclic convolutions with each convolution per-

formed on two sequences of (2d-1P)1/d numbers. Based on
this and Lemma 5, we have:

LEMMA 6. Cyclic convolution of two integer sequences of length

2N3/4 where each integer is in 0 2 1
1 4

,
/N -�

! 
"
$#

 can be per-

formed in O(1) time on an N ¥ N reconfigurable mesh.

PROOF. Choosing d = 4 in the above discussion, the 2N3/4-
point cyclic convolution can be replaced by
(16N3/4)3/4 cyclic convolutions along each dimension
with each convolution performed on two sequences
of (16N3/4)1/4 integers. We will use a 16N ¥ 16N mesh.

Let Aj, Bj, 0 £ j £ 2N3/4 - 1 be the two sequences to be

convolved. Initially, Aj, Bj are in PE(0, jN1/4+ w), 0 £ w
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£ N1/4 - 1, 0 £ j £ N3/4 - 1. By appending the 2N 3 /4

input points with 0s for performing four-dimensional
convolution, we have a (conceptual) four-dimensional
data array of size 2N 3 /16 ¥ 2N 3 /16 ¥ 2N 3 /16 ¥ 2N3 /16.

These 4D data arrays generated from Aj and Bj are
stored in lexicographic order in the top row of the
16N ¥ 16N mesh. For example, data in PEs at a dis-
tance of 2N3 /16 in the top row are adjacent along the
second dimension of the 4D data array. Divide the
mesh into vertical submeshes of size 16N ¥ 2N3/16N1/4.

Then, each submesh has 2N3/16 numbers (from Aj and

Bj) which are adjacent along the first dimension of the
4D data array. From Lemma 5, each convolution on
two sequences of length 2N 3 /16 can be performed in

O(1) time in a submesh. Thus, (16N3/4)3/4 cyclic con-
volutions along the first dimension can be performed
in parallel in O(1) time on a 16N ¥ 16N mesh. Now the
resulting numbers in the top row are permuted in
such a way that the numbers adjacent to each other
along the second dimension of the 4D data array are
adjacent in the top row of the 16N ¥ 16N mesh. 16N
bits are permuted and this can be performed in O(1)
time on a 16N ¥ 16N mesh. Using the above idea for
each of the four dimensions, the convolution can be
completed in O(1) time. �

Now we are ready for the proof of the main theorem:

THEOREM 1. Multiplication of two N bit numbers given in a
row can be performed in O(1) time on an N ¥ N reconfig-
urable mesh.

PROOF. Multiplication of two numbers, aN-1aN-2 º a0, bN-1bN-2

º b0 can be represented by C N2
1 4/�

�
�
�  where

A x A xi
i

i

N

0 5 =
=

-

Â
0

2 13 4/

(4)

A a a a i Ni i N i N iN
= £ £ -

+ - + -1 1 1 2
3 4

1 4 1 4 1 4 0 1
0 5 0 5/ / / , /K  (5)

A N i Ni = £ £ -0 2 13 4 3 4, / / (6)

B x B xi
i

i

N

0 5 =
=

-

Â
0

2 13 4/

(7)

B b b b i Ni i N i N iN
= £ £ -

+ - + -1 1 1 2
3 4

1 4 1 4 1 4 0 1
0 5 0 5/ / / , /K  (8)

B N i Ni = £ £ -0 2 13 4 3 4, / / (9)

C x C xi
i

i

N

0 5 =
=

-

Â
0

2 13 4/

(10)

C A B i Ni k i k
k

i

= £ £ --
=
Â , / 0 2 13 4

0

(11)

Clearly, A Bi i
N, ,

/

Œ -�
! 

"
$#

0 2 1
1 4

 and Ci
NŒ -�

! 
"
$#

-0 2 13 11 4

,
/

for all N s. t. N1/4 - 1 ≥ log N 3 /4. If we can compute Ci,

0 £ i £ 2N3 /4 - 1 in O(1) time, then we can obtain the

result by computing C N2
1 4/

.�
�

�
�  Ci, 0 £ i £ 2N3/4 - 1 can

be obtained by cyclic convolution of Ai and Bi. From
Lemma 6, this can be performed in O(1) time on an
N ¥ N mesh. Now, we have Ci, 0 £ i £ 2N3/4-1. The

desired output is Ci
iN

i

N
2

1 43 4

0

2 1 //

.
=

-Â  Let N ¢  = ÎN3/4/3˚,

then, we have:

C C

C C

i
iN

l
lN

l

N

i

N

l
lN

l

N

l
lN

l

N

2 2

2 2

1 4 1 4
3 4

1 4 1 4

3
3

0

1

0

2 1

3 1
3 1

0

1

3 2
3 2

0

1

/ /
/

/ /

= +

+

=

¢-

=

-

+
+

=

¢-

+
+

=

¢-

ÂÂ

Â Â

Fig. 8. Connection patterns allowed in MRN/LRN.
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Note that C l
lN

l

N
3

3

0

1
2

1 4/

=

¢-Â  can be obtained by con-

catenation of C3l, 0 £ l £ N¢ - 1. The desired output can
be obtained by adding the three 2N-bit numbers ob-
tained by concatenation of C3l, C3l+1, C3l+2. This addi-

tion can be performed in O(1) time on an N ¥ N recon-
figurable mesh. �

3.3 Area-Time Trade-off
It is known [5] that for the multiplication of two N-bit

numbers, AT1+a = W(N1+a ) , for 0 £ a £ 1, in the two-
dimensional bit-model of VLSI (details of the bit-model of
VLSI can be found in [28]). In the bit-model of reconfigur-
able mesh, each PE has O(1)-bit memory and O(1) area
control unit which can store O(1) patterns of switch set-
tings. In addition, the ALU in each PE occupies O(1) area.
Thus, each PE has O(1) area. In each PE, an arithmetic/logic
operation is performed in unit time.

Note that our model allows the use of the reconfigurable
connections. The standard bit-model of VLSI (which was
defined before the reconfigurable mesh was introduced),
did not contemplate the use of reconfigurable connections.

However, the above lower bound for multiplication is
based on information transfer arguments and hence it is
true in the model considered here.

Known VLSI designs satisfying the AT2 lower bound fall
into the range log N T N£ £  [16]. In this section, Theo-
rem 1 is extended to show a VLSI design which satisfies
AT2 optimality over 1 £ £T N .

THEOREM 2. There is a VLSI design to multiply two N-bit num-

bers satisfying AT2 = O(N2), over 1 £ £T N .

PROOF. Multiplication of two N-bit numbers can be reduced
to cyclic convolution of two integer sequences of

length 2N 5 /6 with each integer in 0 2 1
1 6

,
/N -�

! 
"
$#
. The

cyclic convolution can be performed by (64N 5 /6)5/6

cyclic convolutions along each dimension. Note that
each convolution is performed on two sequences of
(64N 5 /6)1/6 integers. We will show that (64N 5 /6)5/6

cyclic convolutions along six dimensions can be per-
formed in O(T) time on a N/T ¥ N/T reconfigurable
mesh. Without loss of generality, assume kT = N1/2 for

Fig. 9. Simulation of some patterns of MRN/LRN on RMESH.
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some integer k. Then, N/T = kN1/2. We will use a

64N/T ¥ 64N/T mesh. The 6D data array can be un-
folded as in Lemma 6 and stored in T consecutive
rows. Processing is performed row by row. Divide the
64N/T ¥ 64N/T mesh into blocks of size 64N/T ¥
2N 5 /36N1/6. From Lemma 5, each convolution on two

sequences of (64N 5 /6)1/6 integers can be performed in

O(1) time in each block. Since we have 32kN7/36 such

blocks in the 64N/T ¥ 64N/T mesh, 32kN7/36 convolu-

tions can be performed in O(1) time. Since 32kN7/36 ¥ T

= 32kTN7/36 = 32N1/2N7/36 = (64N5/6)5/6, the (64N 5 /6)5/6

cyclic convolutions along each dimension can be per-
formed in O(T) time on a 64N/T ¥ 64N/T mesh. Per-
mutation of 64N bits in preparation for cyclic convo-
lution along the next dimension can be performed in
T steps, where in each step, 64N/T bits are permuted
in O(1) time using a 64N/T ¥ 64N/T mesh. �

3.4 Multiplication on Related Models
After the definition of the reconfigurable mesh model in
[17], other models have been defined [3], [20], [30]. These
models restrict the allowed connection patterns. The most
general (and the most powerful) one is the PARBUS model
[30] which allows any combination of connections among
the four ports in each PE. Notice that the PARBUS bit-
model is same as our model in Section 2.1. In [3], the Recon-
figurable Network (RN) model has been introduced. Sev-
eral algorithms on this model have been shown under the
mesh restriction. This model has been denoted as MRN in
[20] and as LRN in [4]. The connection patterns allowed by
MRN/LRN are shown in Fig. 8. In MRN, the number of
possible connection patterns within each PE is 10. In [10],
the RMESH is introduced, which doesn’t allow the {EW,
NS}, {NE, SW}, and the {NW, SE} connections that are al-
lowed in MRN. However, the RMESH allows {NEWS},
{NEW, S}, {NES, W}, {NWS, E}, and {N, EWS} connections.
Thus, the total number of possible connection patterns in
each PE of the RMESH is 12. This corresponds to having
switches on mesh links only [17].

Our multiplication algorithm can be simulated on the
MRN without slowdown, since we only employ a subset of
the connection patterns shown in Fig. 8. Our multiplication
algorithm can also be simulated on the RMESH. All the
connections patterns shown in Fig. 8 except {EW, NS} can
be simulated by a constant number of PEs in the RMESH.
Fig. 9 shows an example illustration of such a simulation.
Other patterns can be simulated in a similar way. Since our
multiplication algorithm does not employ the {EW, NS}
pattern, it can also be simulated on the RMESH model
without asymptotic increase in the time complexity or in the
number of PEs employed.

4 CONCLUSION

It is shown that multiplication of two N-bit integers can be
performed in O(1) time on an N ¥ N bit-model of reconfig-
urable mesh. Previously known O(1) time result [31] uses

N2 ¥ N2 mesh. Our result is obtained by combining our O(1)
time multiplication algorithm on N ¥ N2 reconfigurable
mesh, Rader Transform, and decomposition of one-
dimensional convolution into a multidimensional convolu-
tion. Choosing Rader transform at the expense of long word
length frees us from storing twiddle factors in advance,
which is needed in other designs for multiplication [5], [16],
[22]. It is also shown that our algorithm can be simulated on
other (restricted) reconfigurable mesh models without as-
ymptotic increase in time or the number of PEs used.
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