
An E�cient Dynamic Load Balancing using the Dimension Exchange

Method for Balancing of Quantized Loads on Hypercube

Multiprocessors*

Hwakyung Rim

Dept. of Computer Science

Sogang University

Seoul Korea 121-742

ackyung@arqlab1.sogang.ac.kr

Ju-wook Jang

Dept. of Electronic Eng.

Sogang University

Seoul Korea 121-742

jjang@ccs.sogang.ac.kr

Sungchun Kim

Dept. of Computer Science

Sogang University

Seoul Korea 121-742

ksc@arqlab1.sogang.ac.kr

Abstract

Dynamic load balancing on hypercube multiproces-
sors is considered with emphasis on quantized loads.
Quantized loads are divisible only in a �xed size. First,
we show that a direct application of the well-known Di-
mension Exchange Method(DEM) to quantized loads
may result in di�erence in assigned loads to proces-
sors as large as logN units after balancing for a hyper-
cube of size N . Then we propose a new method which
reduces the maximum di�erence by half to d1

2
logNe.

The claim is proved both by analysis of possible cases
incrementing the di�erence on each phase of balancing
and by enumerating all possible combination of load for
hypercubes of limited sizes using a computer. To esti-
mate the accumulated e�ect of balancing instances un-
der real-world parallel processing environment, a simu-
lation for hypercube multiprocessors using SLAM II tool
is performed. The result shows about 30% improvement
in speedup which results from reduced processing time,
which in turn results from reduced nonuniformity.

1 Introduction

The balancing of loads has been an important mat-
ter in parallel and distributed processing which greatly
a�ects the speedup in processing time. The underly-
ing network topology or architecture, communication
overheads involving transfer of data between proces-
sors, the size of load, the size of smallest unit of load
and etc. should be carefully considered to obtain an
e�cient solution to this problem. From the viewpoint

*This research is partly supportedbyMinistry of Informations

and Communication. republic of Korea

of balancing load among processors, most of the real-
world processing loads can be classi�ed into one of the
following three categories.

� divisible in arbitrary sizes

� divisible in multiples of a �xed size (quantum)

� indivisible

Great part of real-world load falls into the second
category[2][4] , which we call quantized loads. However
many previous balancingmethods fail to address the ef-
fect of quantized loads on their balancing performance.
In this paper, we consider dynamic load balancing
based on the DEM(Dimension Exchange Method)[3]
on hypercube multiprocessor (or multicomputer)with
emphasis on quantized loads.

In the DEM method, balancing is performed be-
tween two processors in such a way that the processor
with larger load sends part of its load to the other pro-
cessor so that they have as equal load as possible. The
load distribution will be uniform after logN phases if
the job is in�nitely divisible. If we have quantized loads
and the sum of quanta from two processors is odd, one
processor should have one more unit of load. This ef-
fect can be accumulated to logN since there can be
logN such phases. As the size of hypercube grows, the
maximum di�erence of logN will also grow, which in
turn increases the processing time.

In this paper we propose a new method which re-
duces the maximum di�erence by half to d1

2
logNe.

The result shows about 30% improvement in speedup
which results from reduced processing time, which in
turn results from reduced nonuniformity. The rest of
the paper is organized as follows. The DEM method



is analyzed for its performance on quantized loads in
Section 2. Our method is presented in Section 3 and
simulation results are presented in Section 4. Section
5 concludes this paper.

2 The Dimension Exchange Method
(DEM) for load balancing on hyper-
cubes

In this section, we provide a brief explanation of the
DEM method and show that a direct application of
the DEM method on quantized loads in a hypercube
of size N may result in nonuniform distribution with
di�erence as large as logN .

Assume we have an n-dimensional hypercube of N
processors, where N = 2n. Given an arbitrary distribu-
tion of quantized loads over the N processors, the bal-
ancing problem is to redistribute the quantized loads
as uniform as possible. Let Pk (k is called processor id)
andWk;i denote the k-th processor and the job assigned
to the processor Pk before balancing phase i, where
k = 0; 1; 2; : : :; N � 1 and i = 0; 1; 2; : : :; logN � 1.
Wk;i is a nonnegative integer representing the num-
ber of quantum loads. Wk;logN represents the load
on Pk after completion of balancing. The load bal-
ancing is performed in logN phases. In phase i, bal-
ancing is performed along dimension i, where i =
0; 1; 2; : : : ; logN � 1. For j; k = 0; 1; 2; : : : ; N � 1, bal-
ancing is performed between Pk and Pj where the bi-
nary representation of k and j di�ers only in the i-th
bit position.

In the DEM method, balancing is performed be-
tween two processors in such a way that the proces-
sor with larger load sends part of its load to the other
processor so that they have as equal load as possible.
If the load is in�nitely divisible, each processor can al-
ways take exactly the same amount of load. But this
is not a practical assumption regarding reality in job
distribution. It is more practical to assume that the
job is divisible in a �xed quantum size and thus Wk;i

should be a nonnegative integer for all k; i. Since P2
has larger load (14) before balancing than that of P0
(7), P2 sends 3 units to P0, which results in W0;2 = 10
and W2;2 = 11. Balancing on a hypercube using the
original DEM can be described as follows:

The original DEM

For i = 0 to logN � 1 do
For all pairs of processors Pk and Pj such that
the binary representation of k and that of j
di�er only in the i-th bit position do in parallel
if Wk;i � Wj;i then

Wk;i+1 = d(Wk;i +Wj;i)=2e
Wj;i+1 = b(Wk;i +Wj;i)=2c

else
Wk;i+1 = b(Wk;i +Wj;i)=2c
Wj;i+1 = d(Wk;i +Wj;i)=2e

end if

The worst case in the original DEM method for

quantized loads

One major problem of the original DEM method,
when directly applied to quantized loads, is as follows.
A balancing phase between two neighboring processors
may cause one unit of di�erence if the sum of the loads
from the two processors is not an even number. This
di�erence can be accumulated to result in the di�erence
of logN after the logN phases.

Figure 1 illustrates one of the worst cases for bal-
ancing quantized loads on a hypercube of 16 proces-
sors. The arrows represent the dimensions along which
balancing is performed. One can note that the DEM
method will not change the number of quantized loads
on any processor all through the logN (4 in this exam-
ple) phases in this particular example. The processor
with the smallest load has a units, while the proces-
sor with the largest load has a + 4 units. The a can
be any nonnegative integer. If we put a + 1 in place
of a, we have another hypercube of 16 processors in
which there exists also a maximum di�erence of 4. If
we combine the two hypercubes to form a hypercube
of 32 processors, the resulting hypercube will have the
di�erence as large as 5. Induction using the size of hy-
percubes from 16, 32 to 2n leads us to the proof that
balancing using the DEM method on a hypercube of
N processors may result in the di�erence as large as
logN . There also exist many cases in which maximum
di�erences are logN � 1; logN � 2; logN � 3; : : : ;.

If the size of hypercube is N , the processor with the
largest load will �nish in a + logN time, which deter-
mines the processing time for the job. Thus the impact
of the maximum di�erence on the processing time de-
pends on the ratio between a and logN . If a is not
large compared with logN , the e�ect of the maximum
di�erence can not be ignored. As the size of hypercube
grows, the maximumdi�erence of logN will also grow,
which in turn increases the processing time. If bal-
ancing is initiated many times during the processing of
the whole job, the e�ect of the maximumdi�erence will
be accumulated to increase the processing time. Later
we will show from simulation how much the maximum
increases the processing time, when accumulated. In
the following section, we propose a new method which
reduces the maximum di�erence by half.



Max

Min

phase 3

a a+1 a+1

a+1

a+1

a+2

a+2

a+2 a+2

a+2

a+2

a+3 a+3

a+3

a+3

a+4

phase 2

phase 1

phase 0

Figure 1. Balancing of quantized loads on a
hypercube of 8 processors using the original
DEM method: a worst case

3 Our method for balancing quantized
loads on hypercube

In this section, we present a new method which im-
proves the original DEM method especially for balanc-
ing quantized loads in hypercubes. In our method, we
devised a scheme which prevents the di�erence from
being incremented on every balancing phase. The fol-
lowing pseudo-code describes our method:

The our balancing method

For i = 0 to logN � 1 do
For all pairs of processors Pk and Pj

such that the binary representation of k
and that of j di�er only in the i-th bit
position with Pk; Pj having bit 0; 1
in the position, respectively do in parallel
if Wk;i +Wj;i = 2m+ 1 and m is

an odd integer then
Wk;i+1 = m
Wj;i+1 = m+ 1

else if Wk;i +Wj;i = 2m + 1 and m is
an even integer then
Wk;i+1 = m + 1
Wj;i+1 = m

else
Wk;i+1 = m
Wj;i+1 = m

end if

In this way, we increase the probability that loads of
same type(odd or even) meet for balancing in the next
phase. To see why, consider the two subcubes, 0-cube
and 1-cube, where all the processors in the 0-cube(1-
cube) have the i-th bit of the binary representation of
the processor id equal to 0(1). The set of processors
belonging to 0-cube(1-cube) will change as i goes from

0 to logN � 1. Note that two processors which be-
long to the same subcube (0-cube or 1-cube) in phase i
will meet for balancing in phase i+ 1. Therefore if we
route loads of same type (odd or even) to same subcube
during balancing in phase i, it increases the probabil-
ity that loads of same type meet for balancing in phase
i+1. Furthermore, in our method it is guaranteed that
the maximum di�erence in a balanced subcube is not
incremented in immediate succession. Here a balanced
subcube after phase i consists of 2i+1 processors whose
binary representation of their id's di�er only in the i+1
consecutive least signi�cant bits. When the size of a
balanced subcube reaches the size of the hypercube,
the balancing is complete.

In our method, the di�erence may not be incre-
mented in immediate succession. If the maximum dif-
ference in a balanced subcube is incremented in phase
i, the maximum di�erence in a balanced subcube in
phase i + 1 containing the half-size subcube is not in-
cremented. One can think of several other cases based
on the type (odd or even) of loads in the way loads
meet for balancing. Those cases can be similarly veri-
�ed for our claim that the maximumdi�erence can not
be incremented in succession. Assume we have four
processors Pk; Pj; Pw; Pv where k and j (w and v) dif-
fer only in the i-th bit position and k and w have 0 in
the i-th bit position. Further k and w (j and v) di�er
only in the (i + 1)-th bit position and k and j have
0 in the (i + 1)-th bit position. One example is when
we have k = 0; j = 1; w = 2; v = 3. Table 1 shows 7
possible cases of incrementing di�erence based on the
type of loads before balancing phase i. The values in
the two rightmost columns show in which phase each
case increments the maximum di�erence in a balanced
subcube. Other cases can be similarly veri�ed. Note
that there is no case in which di�erence is incremented
in immediate succession. This proves that the maxi-
mum di�erence using our method is less than or equal
d1
2
logNe for balancing of quantized loads in a hyper-

cube of size N .

The worst case in the our balancing method for

quantized loads

Even though using our method the maximum dif-
ference in a balanced subcube is not incremented in
each phase, we found that it is possible for the maxi-
mum di�erence to be incremented again in every other
phase. Figure 2 illustrates one worst case of load dis-
tribution before balancing. This proves that the max-
imum di�erence can be less than or equal to d1

2
logNe

for balancing of quantized loads in a hypercube of size
N . This proof combined with the above proof leads us



case wj;i + wk;i ww;i +wv;i wk;i+1 wj;i+1

0 2m+1, m even 2l+1,l even m m+1

1 2m+1, m even 2l+1,l odd m m+1

2 2m+1, m odd 2l,l even m+1 m

3 2m+1, m odd 2l,l odd m+1 m

4 2m, m even 2l+1,l even m m

5 2m, m even 2l+1,l odd m m

6 2m, m odd 2l,l even m m

case ww;i+1 wv;i+1 Inc i Inc i+1

0 l l+1 1 0

1 l+1 l 1 0

2 l l 1 0

3 l l 1 0

4 l l+1 1 0

5 l+1 l 1 0

6 l l 0 1

Table 1. The 7 possible cases of increment-
ing difference regarding the type of qua-
tized loads in successive balancing phases
(Inc i:increment of difference in phase i, Inc
i+1:increment of difference in phase i+1)

to the proof that, in the worst case, our method will
produce the maximum di�erence of exactly d1

2
logNe.

Therefore, the maximum di�erence in our scheme is
only about half of the maximumdi�erence in the orig-
inal DEM when applied to the quantized loads. In
the next section, we will show how the maximum dif-
ferences resulting from repeated balancing a�ect the
total processing time. The SLAM II simulation tool[1]
is employed to show how our scheme performs better
in a practical sense.

4 The simulation

Simulation is performed to satisfy two purposes.
First is to verify the combinatorial proof that the max-
imum di�erence in the worst case for our method does
not exceed d1

2
logNe.we enumerated all possible distri-

bution using the numbers in the range as initial loads
on processors in hypercube. Table 2 shows the num-
ber of combination which produce certain maximum
di�erences. As expected, our method has 0 combina-
tions that produce the maximum di�erence exceeding
d1
2
logNe.
The second and more practical purpose is to show

that our method performs better especially on quan-
tized loads than the DEM method. The purpose of
this simulation is to estimate how the reduced maxi-
mum di�rence of our method will a�ect the job bal-

5 6

7 8

5 6

5 6

5 6

7 8

5 6

5 6

5 6

7 8

5 6

5 6

3 4

3 4

3 4

5 6

(a) before the balancing (b) after the balancing

6 6

6 6

5 7

5 7

6 6

6 6

5 7

5 7

5 5

5 5

4 6

4 6

5 5

5 5

4 6

4 6

Min

Max

Figure 2. Balancing of quan-
tized loads on a hypercube of 32 processors
using our method: a worst case

ancing performance such as average queue length and
speedup in processing time. SLAM II[1] is used as a
simulation tool. Following parameters are used for our
simulation [5]:

100

150

200

250

300

350

400

450

500

550

600

650

700

8 16 32 64

Number of processors

Av
er
ag
e 
of
 m
ax
im
um
 d
if
fe
re
nc
e dem

our

Figure 3. Average of the maximum difference
for 1000�

� The number of processors in a hypercube: 8, 16,
32, 64

� Architecure: loosely coupled multicomputer

� Number of processes(�) generated in each proces-
sor: 1000�; 5000�

� Arrival time: poisson distribution

� Service time: exponential distribution

� Threshold for overload: 50-60% CPU utilization

� No change in load distribution during balancing



8 processors 16 processors

DEM Our DEM

di�=0 50,438 87,034 148,226

di�=1 819,747 925,739 17,593,176

di�=2 211,170 68,802 12,502,375

di�=3 220 0 100,973

di��4 0 0 77,005

16 processors 32 processors

Our DEM Our

di�=0 476,485 55,412 889,092

di�=1 24,949,040 117,986,702 273,339,227

di�=2 4,996,230 220,341,830 63,571,635

di�=3 0 10,254,632 12,543,611

di��4 0 1,704,989 0

Table 2. The maximum difference after bal-
ancing

500

1000

1500

2000

2500

3000

3500

4000

8 16 32 64

Number of processors

Av
er
ag
e 
of
 m
ax
im
um
 d
if
fe
re

nc
e

dem

our

Figure 4. Average of the maximum difference
for 5000�

Figure 3 and Figure 4 shows average of maximum
di�erences after balancing for 1000�; 5000�, respec-
tively. The average is taken over many balancing
instances which happened during the 1,000,000 time
units for the event-driven simulation. The maximum
di�erence is directly related to the maximum of queue
lengths in the hypercube multicomputer. Thus, the
smaller the average is, the more uniform the load dis-
tribution is, which leads to reduced processing time.
Comparison of our method against the DEM shows
30% improvement. Figure 5 shows improvement of our
method in speedup over the DEM method. It shows
about 30% improvement. The comparison also shows
that improvement in speedup tends to grow for larger
hypercube. This is as we expected. Since the pro-
cessing time after balancing is a + logN for the DEM
method and a + d1

2
logNe for our method, when a is

the minimum load after balancing which is assumed to

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8 16 32 64

Number of processors

Sp
ee

du
p 

pr
oc

es
si

ng
 t

im
e

dem_5000 our_5000

dem_1000 our_1000

Figure 5. Balancing effect on speedup

take a time units to �nish. Our method will take much
less time for larger N .

5 Conclusion

A new method for dynamic load balancing on hy-
percubes is proposed which performs better especially
on quantized loads than the well known dimension ex-
change method(DEM). The maximumdi�erence in the
number of load units(quanta of load) after balancing
on a hypercube of size N is reduced from logN to
d1
2
logNe. A simulation using the SLAM II on loosely

coupled hypercube multicomputer shows about 30%
improvement in speedup for processing time.

References

[1] A. Alan, B. Pritsker, Introduction to Simulation
and SLAM II, John Wiley, 1986

[2] M. J. Berger, S. Bokhari, "A partioning strat-
egy for non-uniform problems on multiprocessors,
IEEE Transactions on Computers, C-26, pp. 570-
580, 1987

[3] G. Cybenko, "Dynamic Load Balancing for Dis-
tributed Memory Multiprocessor," Journal of
Parallel and Distributed Computing, 7, pp. 279-
301, 1989

[4] G. Cybenko, T. G. Allen, "Parallel algorithms
for classi�cation and clustering," Proc. SPIE
CAAASP, 1987

[5] M. H. Willebeek-Lemair, "Strategies for Dynamic
Load Balancing on Highly Parallel Computers,"
IEEE Trans. on Parallel and Distributed Systems,
Vol. 4, No. 9, pp. 979-993, 1993


