
Domain-Specific Modeling for Rapid System-Wide
Energy Estimation of Reconfigurable Architectures

Seonil Choi1, Ju-wook Jang2 , Sumit Mohanty1, Viktor K. Prasanna1

1Dept. of Electrical Engg. 2Dept. of Electronic Engg.
Univ. of Southern California Sogang University
Los Angeles, CA, U.S.A. Seoul, Korea

{seonilch, smohanty, prasanna}@usc.edu jjang@sogang.ac.kr

Abstract– Reconfigurable architectures such as FPGAs
are flexible alternatives to DSPs or ASICs used in mobile

devices for which energy is a key performance metric. Re-
configurable architectures offer several parameters such as

operating frequency, precision, amount of memory, number
of computation units, etc. These parameters define a large
design space that must be explored to find energy efficient

solutions. Efficient traversal of such a large design space
requires high-level modeling to facilitate rapid estimation

of system-wide energy. However, FPGAs do not exhibit a
high-level structure like, for example, a RISC processor for
which high-level as well as low-level energy models are avail-

able.
To address this scenario, we propose a domain-specific

modeling technique that exploits the knowledge of the algo-

rithm and the target architecture family for a given problem
to develop a high-level model. This model captures archi-

tecture and algorithm features, parameters affecting power
performance, and power estimation functions based on these
parameters. A system-wide energy function is derived based

on the power functions and cycle specific power state of each
building block of the architecture. This model can be used
to understand the impact of various parameters on system-

wide energy and can be a basis for the design of energy
efficient algorithms. Our high-level model can be used to

quickly obtain fairly accurate estimate of the system-wide
energy of data paths configured using FPGAs. We demon-
strate our modeling methodology by applying it to two do-

mains.

Keywords– domain modeling, energy estimation, energy
optimization

I. Introduction

Dramatic increase in the density and speed of FPGAs

makes them attractive for complex applications. The state-

of-the-art Virtex-II Pro FPGA from Xilinx delivers over 0.3
Tera MACs/sec. at an operating frequency of 300 MHz.
Table I [16] shows the peak performance capabilities of the

Virtex FPGA compared with the fastest DSP available last

year.

With such an available processing power, FPGAs are

an attractive fabric for implementing complex and com-

pute intensive applications such as signal processing ker-

nels for mobile devices. Mobile devices operate in power

This work is supported by the DARPA Power Aware Computing
and Communication Program under contract F33615-C-00-1633 mon-
itored by Wright Patterson Air Force Base and in part by the National
Science Foundation under award No. 99000613.

Ju-wook Jang’s work is supported by LG Yonam Foundation.

constrained environments. Therefore, in addition to time

performance, power performance is a key performance met-

ric [11]. Studies show that optimization at the algorithmic

level has a much higher impact on total energy dissipation

of a system than RTL or gate level. It is reported that

the impact (on energy optimization) ratio is 20 : 2.5 : 1
for algorithmic, register, and circuit level [13]. In this con-

text, there is a need for a high-level energy model which

not only enables algorithmic level optimizations but also

provides rapid and reasonably accurate energy estimates.

TABLE I

Performance Comparison of FPGAs and DSP (Xilinx Inc.)

Function Fastest DSP Virtex-II

8×8 MAC 4.4 billion MACs 600 billion MACs

FIR, 256 tap, 17 MSPS 180 MSPS

16-bit data/coefficient (1.1 GHz) (180 MHz)

1024 point FFT 7.7 µ sec. .1 µ sec.

(16 bit data) (800 MHz) (140 MHz)

Several issues must be addressed in developing a high-

level energy model for FPGAs. There are numerous ways

to map an algorithm onto an FPGA as opposed to map-

ping onto a traditional processor such as a RISC processor

or a DSP, for which the architecture and the components

such as ALU, data path, memory, etc. are well defined.

For FPGAs, the basic element is the lookup table (LUT),

which is too low-level an entity to be considered for high-

level modeling. Besides, the architecture design depends

heavily on the algorithm. Therefore, no single high-level

model can capture the energy behavior of all feasible de-

signs implemented on FPGAs. In addition, to elevate the

level of abstraction, high-level models do not capture all

the details of a system and consider only a small set of key

parameters that affect energy. This lowers the accuracy of

energy estimation.

In order to address the issues discussed above, we pro-

pose a domain-specific modeling technique (Figure 1). This
technique facilitates high-level energy modeling for a spe-

cific domain. A domain corresponds to a family of architec-

tures and algorithms that implements a given kernel. For

example, a set of algorithms implementing matrix multipli-

cation on a linear array is a domain. Detailed knowledge of

the domain is exploited to identify the architecture param-

eters for the analysis of the energy dissipation of the re-

sulting designs in the domain. By restricting our modeling

to a specific domain, we reduce the number of architecture

parameters and their ranges, thereby significantly reducing

the design space. A limited number of architecture param-

eters also facilitate development of power functions that

estimate the power dissipated by each component (a build-

ing block of a design). For a specific design, the compo-

nent specific power functions, parameter values associated

with the design, and the cycle specific power state of each

component are combined to specify a system-wide energy

function.

Fig. 1. Domain-Specific Modeling

Our approach is a top-down approach in contrast with

other approaches that exploit low-level simulations and es-

timations for each component and accumulate these re-

sults to estimate overall energy dissipation. The advan-

tage of our approach is the ability to rapidly evaluate the

system-wide energy using energy function for different de-

signs within a domain. Our high-level energy model also

facilitates algorithmic level energy optimization through

identification of appropriate values for architecture param-

eters such as frequency, number of components, precision,

etc., early in system design.

The organization of the paper is as follows. The next sec-

tion describes the domain-specific modeling technique. Sec-

tion III describes the methodology to estimate the power

functions. A detailed description of high-level modeling

and energy estimation based on the proposed model for

two specific domains is presented in Section IV. We dis-

cuss some applications of the high-level model in Section

V. Related efforts are discussed in Section VI. Section VII

concludes the paper.

II. Domain-Specific Energy Modeling

The goal of our domain-specific modeling (Figure 2) is

to represent energy dissipation of the designs specific to

a domain in terms of parameters associated with this do-

main. For a given domain, only those parameters which

can significantly affect system-wide energy dissipation and

can be varied at algorithmic level are chosen for the high-

level energy model. As a result, our model a) facilitates

algorithmic level optimization of energy performance, b)

provides rapid and fairly accurate estimates of the energy

performance, and c) provides energy distribution profile

for individual components to identify candidates for fur-

ther optimization. First, we define the high-level energy

model. Then we provide details of energy estimation using

this model.

A. High-level Energy Model

Our high-level energy model consists of RModules, Inter-
connects, component specific parameters and power func-
tions, component power state matrices, and a system-wide
energy function.
Relocatable Module (RModule) is a high-level architec-

ture abstraction of a computation or storage module. It is

either a CLB-based logic or a "larger" module composed of

multiple RModules and Interconnects. For example, a reg-
ister can be a RModule if the number of registers varies in
the design depending on algorithmic level choices. One im-

portant assumption about RModule is that energy perfor-

mance of an instance of a RModule is independent of its lo-

cation on the device. While this assumption can introduce

small error in energy estimation, it greatly simplifies the

model. Interconnect represents the connection resources
used for data transfer between the RModules. The power

consumed in a given Interconnect depends on its length,

width, and switching activity. Interconnect can be of var-

ious types. For example, in Virtex-II FPGAs, there are

several Interconnects such as long lines, hex lines, double
lines, and single connections which differ in their lengths
[16]. In the rest of the paper, we use component to refer to
both RModule and Interconnect.

Component specific parameters depend on the charac-
teristics of the component and its relationship to the al-

gorithm. For example, operating frequency or precision of

a multiplier RModule can be chosen as parameters if they

are varied by the algorithm. Possible candidates param-

eters include operating frequency (f), input switching ac-

tivity (sa), word precision (w), power states (ps), number

of RModule type i (ni), and etc. Component specific power
functions capture the effect of component specific param-
eters on the average power dissipation of the component.
The power functions are obtained by implementing sam-

ple designs of individual components and simulating them

using low-level simulators (See Section III).

Component Power State (CPS) matrices capture the
power state for all the components in each cycle. For ex-

ample, consider a design that contains k different types of

components (C1, ..., Ck) with ni components of type i. If

the design has the latency of T cycles, then k two dimen-

sional matrices are constructed where the i-th matrix is of

size T × ni (Figure 3). An entry in a CPS matrix rep-

resents the power state of a component during a specific

cycle and is determined by the algorithm.

System-wide energy function represents the energy dis-
sipation of the designs belonging to a specific domain as a

function of the parameters associated with the domain.

Fig. 2. Domain-Specific Modeling and System-wide Energy Estima-
tion

The domain-specific nature of our energy modeling is ex-

ploited when the designer identifies the level of architecture

abstraction (RModules and Interconnects) appropriate to

the domain and/or chooses the parameters to be used in

the component specific power functions. This is a human-
in-the-loop process and exploits the designer’s expertise in

the algorithm and the architecture family that constitutes

the domain. Well-known power models based on capaci-

tance, voltage, and switching frequency can be more accu-

rate and are generic to be applicable across many domains.

However, they do not provide a designer a clear under-

standing of the impact of his/her algorithmic level design

choices on the energy performance. Our modeling enables

the designer to rapidly explore a large design space based

on the understanding of the effect of the design choices on

the overall energy performance.

To handle modeling complexity we follow a hierarchical

approach. Each RModule can be recursively divided into

RModules and Interconnects. This hierarchical nature al-

lows the designer to capture the details of architecture in

the design at various levels of abstraction to define param-

eters affecting performance.

B. Energy Estimation

Power dissipation by a RModule or Interconnect in a

particular state is captured as a power function of a set

of parameters. These functions are typically constructed

through curve fitting based on some sample low-level sim-

ulations (described in Section III). These functions may

also be provided by the vendors.

CPS matrices contain cycle specific power state informa-

tion for each component. The entries in the CPS matrices

are determined by the algorithm.

Fig. 3. Component Power State Matrices

Combining the CPS matrices and component specific

power functions (See Section III) for individual compo-

nents, the total energy of the complete system is obtained

by summing the energy dissipation of individual compo-

nents in each cycle. The system-wide energy function SE

is obtained as:

SE =
kX
i=1

1

f

 nlX
j=1

TX
t=1

Ci.p.ps

where ps = CPS(i, t, j)

(1)

Ci.p.ps is the power dissipated in the j-th component (j =
1...nl) of type i during cycle t (t = 1...T) and f is the

operating frequency. CPS(i, t, j) is the power state of the
j-th component of the i-th type during the t-th cycle.

Since the system-wide energy function is derived using

component specific power functions, the energy distribu-

tion among various components (the fraction of the to-

tal energy consumed by each component) can be obtained.

This information is used to identify candidate components

to be considered by the designer for energy optimization.

Details can be found in Section IV.

Due to the high-level nature of the model, we can rapidly

estimate the system-wide energy. In the worst case, the

complexity of energy estimation is O(T ×Pk
l=1 ni) (See

Equation 1) which corresponds to iterating over the ele-

ments of the CPS matrices and adding the energy dissi-

pation by each component in each cycle. However, typi-

cally, there is a repeating pattern of state changes for a

component (for example, due to loop structures within the

algorithms). Also, different components of the same type

dissipate the same amount of energy during each cycle.

Fig. 4. Power Function Estimation using MILAN

Therefore, based on these observations the time to com-

pute the energy is better than the worst case complexity of

energy estimation stated above. Further, even if we com-

pute the system-wide energy based on each cycle we do not

analyze the activities at the level of individual gates. Typ-

ically, there are only a few distinct components within a

domain that affect energy dissipation of the designs in that

domain. Indeed, for the illustrative examples considered in

this paper, the time for energy estimation does not depend

on the problem size.

III. Estimating Component Specific Power
Functions

We use the MILAN framework [1] to derive the com-

ponent specific power functions associated with the high-

level energy model. MILAN is a Model based Integrated

simuLAtioN framework for embedded system design and

optimization by integrating various simulators and tools

into a unified environment. In order to use the framework,

the designer first models the target system using the model-

ing paradigms provided in MILAN. The designer provides

the architecture and the parameters (with their possible

ranges) that significantly affect the power dissipation of

the component. Model interpreters(MI) in the MILAN are

used to drive the integrated tools and simulators. Model

interpreters (MI) translate the information captured in the

models into the format required by the low level simulators

and tools.

Let z(p1, . . . , pn) be the component specific power func-
tion and p1, . . . , pn be the parameters associated with the

component. Figure 4 illustrates the process of deriving

component specific power functions. This process involves

estimation of power dissipation through low-level simula-

tion of the component at different design points (a design

point is a unique combination of parameter values). For

low-level simulations, we have integrated simulator such as

XPower [16] and ModelSim [8] into the MILAN framework.

The switching activity for the input to the component can

be provided by the designer or specified as some default

values, depending on the desired accuracy. One can choose

appropriate values based on prior experience for the ease

of analysis. However, if higher accuracy is needed, behav-

ioral simulation of the complete application over expected

input vectors to the whole system can be performed to ob-

tain exact values for switching activity at the input of each

component.

Low-level simulation is performed at each of the cho-

sen design points to estimate the power dissipation. These

power estimates are fed to the power function builder. A

typical low-level simulation for power estimation of a sam-

ple design point proceeds as follows. The chosen sample

VHDL design is synthesized using Synopsys FPGA Express

on Xilinx ISE 4.1i. The place-and-route file (.ncd file) is

obtained for the target FPGA device, Virtex-II XC2V1500.

Mentor ModelSim 5.5e is used to simulate the module and

generate simulation results (.vcd file). These two files are

then provided to the Xilinx XPower tool to estimate the

energy dissipation.

The power function builder is driven by an MI from the

MILAN framework. For components with a single param-

eter, the power function can be obtained from curve-fitting

on sample simulation results. In case of larger number of

the parameters, surface fitting can be used. Currently, we

only focus on building component specific power functions

with at most two parameters. The resulting power func-

tions are provided back to the designer.

The component specific power function of an intercon-

nect depends on its length, operating frequency, and the

switching activity. We use Equation 2 to estimate power

dissipation in an interconnect. Φ.p denotes the power dis-
sipation of a cluster of k RModules connected through the

candidate interconnect and M.pi represents power dissipa-

tion of the i-th RModule. The power dissipated by the

cluster is obtained by low-level simulation.

IC.p = Φ.p−
kX
i=1

M.pi (2)

While the initial effort to build the component specific

power function might be costly compared with ad hoc ap-

proaches, the benefits are noticeable when the same com-

ponents are re-used in different designs within and across

domains.

IV. Illustrative Examples of Domain-Specific
Energy Modeling

To illustrate our domain-specific energy modeling, we

apply the techniques discussed in the previous sections to

define a high-level model for two domains implementing

matrix multiplication, a frequently used kernel operation

in wide variety of signal processing algorithms. For each

domain we identify the components and the component

specific parameters, identify the power functions for each

component, and finally derive a system-wide energy func-

tion. Two architecture families, a uniprocessor architecture

and a linear array architecture, are chosen to demonstrate

our approach.

A. Example 1: Uniprocessor Architecture

We define a uniprocessor (PE) implementing the usual

block matrix multiplication as the first domain. The PE

has one MAC (multiplier and accumulator), a cache of size

c, and I/O ports (see Figure 5). For the sake of illustration,

we assume that all operations have a single cycle latency

and the data matrices are stored in an external memory.

For n × n matrix multiplication, computational complex-

ity of the algorithm is O(n3). Block matrix multiplication
(BMM) is performed with block size of

√
c×√c. The I/O

complexity (amount of traffic between the PE and external

memory) is O(n3/
√
c). This complexity corresponds to the

minimum achievable I/O complexity for matrix multiplica-

tion [5]. It can be observed that a large cache decreases

the I/O complexity and as a result improves the energy

performance for I/O.

Fig. 5. Uniprocessor Architecture

A.1 Identifying Components and Parameters

We identified the MAC and the cache as RModules and

the I/O as an Interconnect. The size of the cache can be

controlled by the algorithm. The RModules have w bit

precision and the cache has one more parameter, c, the

cache size. For the sake of illustration, the cache size is the

only variable parameter and w = 8 is used. The component
specific power functions for MAC (M.p), cache (R.p), and

I/O (IO.p) are obtained through low-level simulation. The

MAC is implemented using CLB-based multiplier and the

cache is realized using register modules provided in the

Virtex-II library. M.p and IO.p are constants. The power

function for the cache is: R.p(c) = 22.88 + 2.34c (mW).

A.2 System-wide Energy Function

We consider the energy dissipated by the PE on an

FPGA. We do not consider the energy dissipated by the

external memory. The system-wide energy function (SE)

is:

SE(c) =
1

f
(n3 ·M.p+ n3 ·R.p(c) + (n3/√c) · IO.p).

Note that as c varies, we obtain a family of the architec-

tures each implementing matrix multiplication using BMM

with different block sizes. The operating frequency f is 166

MHz. Figure 6 shows how different values of c affect the

system-wide energy and the energy distribution between

the components of the complete system for a 6× 6 matrix
multiplication. As c increases, the energy for performing

I/O decreases but the energy dissipated in the cache in-

creases. Initially, the system-wide energy decreases as c

increases but later for large values of c the system-wide

energy goes up.

Fig. 6. System-wide Energy for a PE and Energy Distribution as a
Function of Cache Size

B. Example 2: Linear Array Architecture

For the second domain, we considered a linear array of

processing elements (PEs) with constant I/O bandwidth

(independent of the problem size) as the architecture family

to perform matrix multiplication. The following discussion

is based on optimal algorithms for matrix multiplication on

a linear array family of architectures [12].

B.1 Defining Components and Parameters

The structure of the linear array is shown in Figure 7. It

consists of two components: processing elements (PEs) and

interconnects connecting adjacent PEs. For the purpose of

high-level modeling, we identified the PE as an RModule

and the bus between two PEs as an Interconnect.

Fig. 7. Linear Array of PEs

In order to identify the component specific parameters,

we analyze the structure of each PE. The PE (See Figure

8) has a MAC of precision w and a memory of size s. The

memory is realized by using register modules provided in

the FPGA library. The PE has two power states ON and

OFF. During the ON state the multiplier is ON and thus

the PE dissipates more energy than the OFF state when the

multiplier is off. The power state of the multiplier is con-

trolled by gated clocking. The PE also includes 6 registers
and 3 multiplexers of w bits. The key parameters affecting
energy are precision (w), amount of memory within a PE

(s), and power states (ps).

A matrix multiplication algorithm for linear array archi-

tectures is proposed in [12]. There are several constraints

imposed by the algorithm which are exploited to identify

component specific parameters and their ranges. Also, to

achieve the minimum latency, the minimum number of PEs

Fig. 8. The details of the PE

needed for a n× n matrix multiplication is n [12]. There-

fore, the range of s is given by 1 ≤ s ≤ n. To achieve

the minimal I/O complexity O(n2), the total amount of
memory across all PEs should be n2. Therefore, the total

number of PEs (pe) is n dn/se. The latency (T) of this
design using n dn/se PEs and s memory per PE is [12]:

T =
1

f
(n2 + 2n dn/se− dn/se+ 1). (3)

We consider the problems of size 1 ≤ n ≤ 16. For the
sake of illustration, we fixed w at 8. The parameters and
their ranges are shown in Table II. Note that the parame-

ters of interest are pe, ps, and s. The system-wide energy

function is specified using these three parameters.

TABLE II

Model Parameters

Parameters Values or ranges

s 1 ≤ s ≤ n

pe 1 ≤ pe ≤ n dn/se
w 8
ps on, off

B.2 Estimating Power Functions

To estimate the power function of the PEs, we applied

the technique described in Section III. The amount of

memory per PE (s) was varied. In the sample simulations,

the input data to the components in estimating the power

dissipation was randomly generated and its switching ac-

tivity (sa) was found to be 25%. We chose the operating

frequency as 166 MHz since we compare our designs with

the matrix multiplication provided in the Xilinx library

which operates at the same frequency. The comparison

can be found in Section V. The power function for the PE

is given by:

PE.p.ps =

½
7.01s+ 31.04 (mW), ps = on

7.01s+ 14.04 (mW), ps = off .
(4)

The interconnect power function is constant. It is es-

timated using Equation 2 since the interconnect between

the PEs is localized in the design and is regular. We imple-

mented two PEs and the interconnect, and measured the

power dissipation while both PEs are in ON state. The

power dissipated in the interconnect is IC.p = 39.74 mW.
Thus, our high-level model for matrix multiplication on

linear array architecture consists of PEs, Interconnects,

component specific parameters and their ranges as shown

in Table II, the power function for the PE (Equation 4),

and the power function for the interconnect.

B.3 Specifying System-wide Energy Function

To derive the system-wide energy function (SE) (shown

in Equation 5), we use Equation 1. In this domain, we can

separate the equation into three parts: the total energy dis-

sipated in the PE when the multiplier is on (EPE|on), the
total energy dissipated in the PE when the multiplier is off

(EPE|off), and the total energy dissipated in interconnect
(EIC). Therefore,

SE(n, s) = EPE|on + EPE|off +EIC (5)

Note that the power dissipation of all the PEs (at a given

state of multipliers) is identical. In each PE, the multiplier

is on for a duration of T / (dn/se) [12]. EPE|on is shown in
Equation 6. In each PE, the multiplier is off for a duration

of T · (1 − 1/ dn/se). EPE|off is shown in Equation 7.
Equation 8 shows the total energy of interconnect. PE.p.ps

refers to the power dissipation of PE when its multiplier is

in state ps (See Equation 4).

EPE |on (n, s) =
T§
n
s

¨ · nln
s

m
· PE.p.ps=on

= n · T · PE.p.ps=on (6)

EPE|off (n, s) = T (1− 1§
n
s

¨) · n ln
s

m
· PE.p.ps=off

= T (n
ln
s

m
− n) · PE.p.ps=off (7)

EIC(n, s) = T (n
ln
s

m
− 1) · IC.p (8)

In order to verify the accuracy of our high-level energy

modeling, we performed the following experiments. We

considered several sample designs with various problem

sizes (n = 3, 6, 8, 9, 12, 16). We set s = n. We used the

system-wide energy function to estimate the system-wide

energy dissipation of these designs. We compared this re-

sult with a complete VHDL simulation using the Xilinx

tools. From Equation 3 the latency is n2+2n clock cycles.
Further, the PE, when s = n, is always in the ON state.

Therefore, the system-wide energy function simplifies to

SE(n, n) = EPE|ON + EIC . The system-wide energy for

n× n matrix multiplication with w = 8 is given in column
labeled "Estimated" in Table III.

We also implemented each of the sample designs in

VHDL and simulated them using Xilinx ISE 4.1i and Mod-

elsim 5.5e. The energy estimation is performed using Xilinx

XPower. The input switching activity to these designs is

the same (25%) as used during evaluation of component

TABLE III

Illustration of Accuracy of Our Modeling in Example 2

Problem size Energy (nJ)

(n) Estimated Measured Error

3 21.4 23.1 7.4%

6 159.9 169.1 5.4%

8 399.6 430.2 7.1%

9 590.6 633.0 6.7%

12 1,576.9 1,671.5 5.7%

16 4,357.8 4,646.4 6.2%

specific power functions. The measured energy values are

shown in column labeled "Measured" in Table III.

Table III also shows the error percentage of our high-level

estimation method when compared with energy estimation

values obtained through low-level simulation. The error on

the average is within 6.4% and is 7.4% in the worst case.

The time needed to perform high-level estimation (assum-

ing the power functions are pre-computed) is on the order

of minutes on a Pentium III Xeon running at 700 MHz,
whereas the time needed for low-level simulation and power

estimation was 3 hours per design on the same machine.

V. Design Methodology Using the Model and
Energy Optimization

Our domain-specific modeling provides an energy esti-

mation methodology to facilitate design decisions in the

early phases of the design cycle. The system-wide energy

function captures the impact of the architecture parameters

on the system-wide energy at the algorithmic level. Using

this, the designer identifies trade-offs among area, latency,

and energy. The designer explores a domain and identifies

an appropriate design based on a selection criteria. The

detailed design methodology can be found in [10].

To demonstrate the energy efficiency of our data path

designs, we compare them with the designs provided by

the Xilinx library [16]. Xilinx provides a module for 3× 3
matrix multiplication. To perform C = A×B, the module
uses one set of 3 registers for A matrix to store one row

and the another set of 9 registers to store the complete B
matrix. A single multiplier is used. A row of data from

A and the complete B are brought in to the module to

compute the first row of C. This process is repeated for
the other two rows of A to generate the complete C. For
larger problem size, block matrix multiplication with block

size 3× 3 is used. The operating frequency of the module
is 166 MHz. The energy dissipation was measured using
XPower. Table IV shows the area, latency, and the system-

wide energy of the designs.

For our design, we estimate the energy dissipation us-

ing the system-wide energy function (Equation 5) with the

same operating frequency as the Xilinx module, f = 166
MHz. The other parameters are w = 8, n = 6, and s = 6.
Our design uses more area compared with the Xilinx de-

sign since we use 6 multipliers. However, the larger I/O
requirement of the Xilinx library results in higher energy

TABLE IV

Comparison for 6× 6 matrix multiplication

Xilinx Design based on

Metric design [16] our methodology

Area (# of slices) 179 1,074

Latency (µ sec.) 2.17 0.295

Energy (nJ) 260.5 169.1

dissipation. Our design dissipates about 30% less energy.

Also, using our model and design methodology, the de-

signer can further optimize a chosen design by improving

the performance of the components that consume the sig-

nificant energy. Initially, the system-wide energy function

is analyzed to identify the distribution of energy dissipa-

tion among various types of components (See Figure 6).

Components with higher percentage of energy dissipation

are chosen as possible candidates for design modification.

The detailed optimization techniques can be found in [10].

VI. Related Work

Several research efforts have focused on rapid energy es-

timation of a design on FPGAs. Shang and Jha [14] pro-

posed a black-box approach to estimate energy based on

input and output signal statistics. This approach is suit-

able for estimation of average power dissipation of a RT-

level component to be embedded into a system. However,

it is not applicable for algorithm level power analysis. On

the other hand, our model captures various architecture

parameters that can be manipulated at algorithmic level

for energy optimization.

XPower, the power estimation tool provided by Xilinx

[16], estimates the energy dissipation of FPGAs based on

low-level simulation. The input to the tool is LUT-level

place-and-route information along with details of switching

activity for LUT-level components. While its accuracy is

comparable with the actual execution of the design, it does

not support energy estimation early in the design phase

when the complete system description in some HDL is not

available. Stammermann et al. presented ORINOCO, a

software tool for power dissipation analysis and optimiza-

tion at the algorithmic level from C/C++ and VHDL de-

scription [15]. However, C/C++ or VHDL descriptions do

not capture parameters affecting system-wide energy and

also a designer requires a complete knowledge of the final

system before the code can be generated in these languages.

Both ORINOCO and XPower are essentially estimation

tools and can be used in our methodology to perform low-

level sample simulations necessary for specifying our com-

ponent specific power functions. We have compared our

estimation accuracy against XPower.

Chou et al. proposed a hardware/software co-synthesis

CAD tool (IPChinook) [4] primarily targeted towards

ASIC design from a single high-level specification (for

both hardware and software) and hardware/software co-

simulation. This tool does not capture the effect of param-

eter variation on energy dissipation for individual compo-

nents which is essential for algorithmic level analysis.

In [2] regression tree [3] is used to improve the power es-

timation of a RT-level component. Starting with candidate

variables (I/O bits), the variable vi, which has the maxi-

mum impact on the power dissipation is identified. Then

the sample power dissipation results of power measurement

is split in two subsets based on this variable. The splitting

is recursively performed to build a regression tree which

ranks variables in their significance with respect to the

power. It is a bottom-up approach starting from low-level

implementation and ends in identifying significant variables

affecting the power.

In contrast, our model starts with candidate parameters

chosen from a high-level view of the architecture and al-

gorithm. The effect of the parameters on the system-wide

energy is captured in the component specific power func-

tions. The component specific power functions are used to

obtain parameter values for optimal power performance by

traversing the design space at an algorithmic level.

VII. Conclusion

This paper introduced domain-specific energy modeling

for rapid system-level energy estimation and algorithmic

level optimization for reconfigurable architectures. The

modeling captures the details of the architecture and the

algorithm to identify parameters affecting the power per-

formance, hence facilitating derivation of a system-wide en-

ergy function. Matrix multiplication on a uniprocessor and

a linear array architecture were chosen as two domains to

illustrate construction of a high-level model, derivation of

power functions for individual components, and combine

them to obtain an system-wide energy function.

For one specific domain, the system-wide energy func-

tion was tested on several sample designs for its accuracy

against time-consuming low-level energy estimation. The

reference low-level energy evaluations were obtained on a

Virtex-II chip through synthesis using Xilinx ISE 4.1i, sim-

ulation by ModelSim 5.5e, and power estimation by Xilinx

XPower. The error in the system-wide energy estimation

using the high-level model was within 6.4% and was 7.4%

in the worst case. Using our modeling, the time needed to

evaluate the system-wide energy function is in the order of

minutes on a Pentium III Xeon running at 700 MHz while
the low-level energy estimation takes more than 3 hours

(on the average) for each sample design.

Our modeling methodology provides a virtual malleable

data path. It is virtual because at the time of performance

estimation we do not implement the design on target FP-

GAs. It is malleable because there are several parameters

that can be varied to understand the trade-offs between

different performance metrics such as energy, area, and la-

tency. Such a characteristic makes our proposed model

suitable to be considered during large application synthesis

where several different kernels are integrated to implement

a system such as MPEG encoding or Software Defined Ra-

dio. In such scenarios, once we have models for various ker-

nel implementations, we can exploit the multi-level design

space exploration (DSE) technique provided in the MILAN

framework [1]. It evaluates the system-level design space

against user specified constraints [9] to identify an appro-

priate design.

Currently, analytical techniques are being developed for

various options for interconnection resources available in

the state-of-the-art FPGA devices to predict their energy

behavior. Family of architectures that contains intercon-

nection networks such as hypercubes and binary trees are

being considered for future analysis.

References
[1] A. Agrawal, A. Bakshi, J. Davis, B. Eames, A. Ledeczi, S. Mo-

hanty, V. Mathur, S. Neema, G. Nordstrom, V. Prasanna, C.
Raghavendra, and M. Singh, "MILAN: A Model Based Inte-
grated Simulation for Design of Embedded Systems," Language
Compilers and Tools for Embedded Systems, 2001.

[2] A. Bogliolo, L. Benini and G. Micheli, "Regression-based RTL
Power Modeling," ACM Transactions on Design Automation of
Electronic Systems, Vol. 5, No. 3, 2000.

[3] B. L. Bowerman and R. T. O’Connell, "Linear Statistical
Models-An Applied Approach," 2nd Edition, Brooks/Cole Pub
Co.

[4] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello,
"IPCHINOOK: An Integrated IP-based Design Framework for
Distributed Embedded System," Design Automation Confer-
ence, 1999.

[5] J.-W. Hong and H. T. Kung, "I/O Complexity: The Red-Blue
Pebbling Game," ACM Symposium on Theory of Computing
(STOC), 1981.

[6] J. Jang, S. Choi, and V. K. Prasanna, "Energy-Efficient Matrix
Multiplication on FPGAs," submitted to International Confer-
ence on Field Programmable Logic and Applications, 2002.

[7] V. Mathur and V. K. Prasanna, "A Hierarchical Simulation
Framework for Application Development on System-on-Chip Ar-
chitectures," IEEE Intl. ASIC/SOC Conference, 2001.

[8] ModelSim, Model Technologies, http://www.model.com/.
[9] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, "Rapid

Design Space Exploration of Heterogeneous Embedded Systems
using Symbolic Search and Multi-Granular Simulation," to ap-
pear in Language Compilers and Tools for Embedded Systems,
2002.

[10] S. Mohanty, S. Choi, J. Jang, and V. K. Prasanna, "A Model-
based Methodology for Application Specific Energy Efficient
Data path Design using FPGAs," to appear in IEEE Intl. Con-
ference on Application-specific Systems, Architectures and Pro-
cessors, 2002.

[11] T. Mudge, "Power: A First-Class Architectural Design Con-
straint," IEEE Computer , Volume. 34, April 2001.

[12] V. K. Prasanna Kumar and Y. Tsai, "On Synthesizing Opti-
mal Family of Linear Systolic Arrays for Matrix Multiplication,"
IEEE Transactions on Computers, Vol. 40, No. 6, 1991.

[13] A. Ragunathan, N. K. Jha, and S. Dey, "High-level Power Anal-
ysis and Optimization," Kluwer Academic Publishers, 1998

[14] L. Shang and N. K. Jha, "High-Level Power Modeling of CPLDs
and FPGAs," International Conference on Computer Design,
2001.

[15] A. Stammermann, L. Kruse, W. Nebel, and A. Prastsch, "Sys-
tem Level Optimization and Design Space Exploration for Low
Power," Proc. of ISSS, 2001.

[16] Xilinx Application Note: Virtex-II Series and Xilinx ISE 4.1i
Design Environment, http://www.xilinx.com.

