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Abstract. Reconfigurable architectures such as FPGAs are flexible alternatives to DSPs or ASICs used in

mobile devices for which energy is a key performance metric. Reconfigurable architectures offer several

design parameters such as operating frequency, precision, amount of memory, degree of parallelism, etc.

These parameters define a large design space that must be explored to find energy-efficient solutions. It is

also challenging to predict the energy variation at the early design phases when a design is modified at

algorithm level. Efficient traversal of such a large design space requires high-level modeling to facilitate

rapid estimation of system-wide energy. However, FPGAs do not exhibit a high-level structure like, for

example, a RISC processor for which high-level as well as low-level energy models are available. To

address this scenario, we propose a domain-specific modeling technique for energy-efficient kernel design

that exploits the knowledge of the algorithm and the target architecture family for a given kernel to

develop a high-level model. This model captures architecture and algorithm features, parameters affecting

energy performance, and power estimation functions based on these parameters. A system-wide energy

function is derived based on the power functions and cycle specific power state of each building block of

the architecture. This model is used to understand the impact of various parameters on system-wide energy

and can be a basis for the design of energy-efficient algorithms. Our high-level model is used to quickly

obtain fairly accurate estimate of the system-wide energy dissipation of data paths configured using

FPGAs. We demonstrate our modeling methodology by applying it to four domains.
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1. Introduction

Dramatic increase in the density and speed of FPGAs makes them attractive for
complex applications. The state-of-the-art Virtex-II Pro FPGA from Xilinx has
multi-million gates and delivers over 0.3 Tera MACs/sec. at an operating frequency
of 300MHz [22]. With such an available processing power, FPGAs are an attractive



fabric for implementing complex and compute intensive applications such as signal
processing kernels for mobile devices [9, 17] (Styles and Luk, 2000). Mobile devices
operate in power constrained environments. Therefore, in addition to time
performance, energy performance is a key performance metric [12]. Studies show
that optimization at the algorithmic level has a much higher impact on total energy
dissipation of a system than RTL or gate level. It is reported that the impact (on
energy optimization) ratio is 20:2.5:1 for algorithmic, register, and circuit level [16].
In this context, there is a need for a high-level energy model which not only enables
algorithmic level optimizations but also provides rapid and reasonably accurate
energy estimates.
Several issues must be addressed in developing a high-level energy model for

FPGAs. There are numerous ways to map an algorithm onto an FPGA as opposed
to mapping onto a traditional processor such as a RISC processor or a DSP, for
which the architecture and the components such as ALU, data path, memory, etc.
are well defined. For FPGAs, the basic element is the lookup table (LUT), which is
too low-level an entity to be considered for high-level modeling. Besides, the
architecture design depends heavily on the algorithm. Therefore, no single high-level
model can capture the energy behavior of all feasible designs implemented on
FPGAs. In addition, to elevate the level of abstraction, high-level models do not
capture all the details of a system and consider only a small set of key parameters
that affect energy. This lowers the accuracy of energy estimation.
In order to address the issues discussed above, we propose a domain-specific

modeling technique (Figure 1). This technique facilitates high-level energy modeling
for a specific domain. A domain corresponds to a family of architectures and
algorithms that implements a given kernel. For example, a set of algorithms
implementing matrix multiplication on a linear array is a domain. Detailed
knowledge of the domain is exploited to identify the architecture parameters for
the analysis of the energy dissipation of the resulting designs in the domain. By
restricting our modeling to a specific domain, we reduce the number of architecture
parameters and their ranges, thereby significantly reducing the design space. A
limited number of architecture parameters also facilitate development of power
functions that estimate the power dissipated by each component (a building block of
a design). For a specific design, the component specific power functions, parameter
values associated with the design, and the cycle specific power state of each
component are combined to specify a system-wide energy function.
Our approach is a top-down approach in contrast with other approaches that

exploit low-level simulations and estimations for each component and accumulate
these results to estimate overall energy dissipation. The advantage of our approach is
the ability to rapidly evaluate the system-wide energy using energy function for
different designs within a domain. Our high-level energy model also facilitates
algorithmic level energy optimization through identification of appropriate values
for architecture parameters such as frequency, number of components, precision,
etc., early in system design.
The organization of the paper is as follows. Related efforts are discussed in Section

2. Section 3 describes the domain-specific modeling technique and the methodology
to estimate the power functions. A detailed description of modeling and energy
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estimation using domain-specific modeling for four different domains is presented in
Section 4. We discuss some applications of the domain-specific modeling in Section
5. Section 6 concludes the paper.

2. Related work

Several research efforts have focused on rapid energy estimation of a design on
FPGAs. Shang and Jha [18] proposed a black-box approach to estimate energy
based on input and output signal statistics. This approach is suitable for estimation
of average power dissipation of a RT-level component to be embedded into a system.
However, it is not applicable for algorithm level power analysis. On the other hand,
our model captures various architecture parameters that can be manipulated at
algorithmic level for energy optimization.
XPower, the power estimation tool provided by Xilinx [22], estimates the energy

dissipation of FPGAs based on low-level simulation. The input to the tool is LUT-
level place-and-route information along with details of switching activity for LUT-
level components. While its accuracy is comparable with the actual execution of the
design, it does not support energy estimation early in the design phase when the
complete system description in some HDL is not available. Stammermann et al. [20]

Figure 1. Domain-specific modeling.

DOMAIN-SPECIFIC MODELING FOR RAPID ENERGY ESTIMATION 261



presented ORINOCO, a software tool for power dissipation analysis and
optimization at the algorithmic level from C/Cþþ and VHDL description. However,
C/Cþþ or VHDL descriptions do not capture parameters affecting system-wide
energy and also a designer requires a complete knowledge of the final system before
the code can be generated in these languages. Both ORINOCO and XPower are
essentially estimation tools and can be used in our methodology to perform low-level
sample simulations necessary for specifying our component specific power functions.
We have compared our estimation accuracy against XPower.
In Bogliolo et al. [1] regression tree [2] is used to improve the power estimation of a

RT-level component. Starting with candidate variables (I/O bits), the variable vi,
which has the maximum impact on the power dissipation is identified. Then the
sample power dissipation results of power measurement is split in two subsets based
on this variable. The splitting is recursively performed to build a regression tree
which ranks variables in their significance with respect to the power. It is a bottom-
up approach starting from low-level implementation and ends in identifying
significant variables affecting the power.
In contrast, our model starts with candidate parameters chosen from a high-level

view of the architecture and algorithm. The effect of the parameters on the system-
wide energy is captured in the component specific power functions. The component
specific power functions are used to obtain parameter values for optimal power
performance by traversing the design space at an algorithmic level.

3. Domain-specific energy modeling

Since FPGAs provide the freedom to map various architectures, choosing an
appropriate architecture plays a significant role in determining the amount of
interconnect and logic to be used in the design which also affects energy dissipation,
latency, and area. Therefore, based on the performance needs and the characteristic
of the target FPGA chip, it is possible to identify a set of suitable architectures, each
having different characteristics in terms of I/O complexity, memory requirements,
area, etc. Defining a domain which consists of an appropriate architecture for an
algorithm ensures that we begin with an efficient design most suitable for the
performance requirements and that there are various architecture parameters that
can be varied to explore trade-offs among energy, latency, and area. For example,
matrix multiplication can be implemented using a 1D array (linear array) or a 2D
array. A 2D array would dissipate more power from interconnect since more
interconnects are required. Thus, it is possible that more energy would be dissipated,
depending upon the resulting latency. The parameters representing algorithm level
and architecture level choices for a specific application form a multi-dimensional
space. For example, the number of multipliers, registers and the I/O channels can be
changed from algorithm level choices for matrix multiplication.
In the course of high-level modeling, we consider many power management

techniques that provide control knobs when applied to designing for FPGAs [19, 23].
One such technique is clock gating, which is used to disable parts of the device that
are not in use during the computation. In the Virtex-II family of FPGAs, clock
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gating can be realized by using primitives such as BUFGMUX to switch from a high
frequency clock to a low frequency clock [22]. BUFGCE can be used for dynamically
driving a clock tree only when the corresponding logic is used. For example, FFT
computation has many complex number multipliers to perform twiddle factor
computations (multiplication and addition/subtraction). Because of the nature of the
algorithm, some twiddle factors are 1;� 1; j, or � j and their computation can be
bypassed. Thus, the implementation of twiddle factor computation can exploit clock
gating to disable the unnecessary computation blocks. Choosing bindings is another
technique. A binding is a mapping of a computation to an FPGA component. The
ability to choose the proper binding is due to the existence of several configurations
for the same computation. Thus, different bindings affect FPGA energy dissipation.
For example, there are three possible bindings for storage elements in Virtex-II
devices based on the number of entries: registers, slice based RAM (SRAM), and
embedded Block RAM (BRAM). Another example is the choice between hard and
soft IP. One such case is the choice of multipliers: block multipliers, such as those in
the Xilinx Virtex-II and Altera Stratix, can be more efficient than CLB-based
multipliers. In high-level modeling, we can analyze the trade-offs that arise from
various bindings based on the design requirements.
Exploiting the domain knowledge and the power management techniques, the

goal of domain-specific modeling (Figure 2(a)) is to represent energy dissipation of
the designs specific to a domain in terms of parameters associated with this
domain. For a given domain, only those parameters which can significantly affect
system-wide energy dissipation and can be varied at algorithmic level are chosen
for the high-level energy model. As a result, our model (a) facilitates algorithmic

Figure 2. (a) Domain-specific modeling and system-wide energy estimation and (b) component power

state matrices.
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level optimization of energy performance, (b) provides rapid and fairly accurate
estimates of the energy performance, and (c) provides energy distribution profile
for individual components to identify candidates for further optimization. First, we
define the high-level energy model. Then we provide details of energy estimation
method using this model.

3.1. High-level energy model

Our high-level energy model consists of RModules, Interconnects, component specific
parameters and power functions, component power state matrices, and a system-wide
energy function.
Relocatable module (RModule) is a high-level architecture abstraction of a

computation or storage module. It is either a CLB (configurable logic block)-based
logic or a ‘‘larger’’ module composed of multiple RModules and Interconnects. We
define RModule whose power dissipation can be individually characterized once
their input stimuli are known, regardless of their location. For example, a register
can be a RModule if the number of registers varies in the design depending on
algorithmic level choices. One important assumption about RModule is that energy
performance of an instance of a RModule is independent of its location on the
device. While this assumption can introduce small error in energy estimation, it
greatly simplifies the model. We regard RModules as building blocks which are used
to construct the energy model. The granularity of RModules for a specific domain
are influenced by the domain. For example, the adders or registers inside the
multiplier can be RModules. But there is no sense choosing them since there are no
corresponding parameters for them in the domain. They are not targets for energy
optimization at algorithm level. Interconnect represents the connection resources
used for data transfer between the RModules. The power dissipated in a given
Interconnect depends on its length, width, and switching activity. Interconnect can
be of various types. For example, in Virtex-II FPGAs, there are several Interconnect
types such as long lines, hex lines, double lines, and single connections which differ in
their lengths [22]. In the rest of the paper, we use component to refer to both
RModule and Interconnect.
Component specific parameters depend on the characteristics of the component

and its relationship to the algorithm. We choose those parameters which may
significantly affect the total energy using knowledge of application, algorithm and
architecture and model the domain using the chosen parameters. For example, we
model the domain for the matrix multiplication using the number of multipliers and
registers since power dissipation in these components significantly affects the total
energy (Section 4.2). From our knowledge in the algorithm, we find that there exists
frequent systolic movement of intermediate results among them. Another examples
are operating frequency and precision of a multiplier RModule if they are varied by
the algorithm. Possible candidates parameters include operating frequency ð f Þ, input
switching activity ðswÞ, word precision ðwÞ, power states ðpsÞ, number of RModule
type i ðniÞ, etc. Component specific power functions capture the effect of component
specific parameters on the average power dissipation of the component. The power
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functions are obtained by implementing sample designs of individual components
and simulating them using low-level simulators (described later in this section).
Component power state (CPS) matrices capture the power state for all the

components in each cycle. For example, consider a design that contains k different
types of components ðC1; . . . ;CkÞ with ni components of type i. If the design has the
latency of T cycles, then k 2D matrices are constructed where the i-th matrix is of size
T6ni (Figure 2(b)). An entry in a CPS matrix represents the power state of a
component during a specific cycle and is determined by the algorithm.
System-wide energy function represents the energy dissipation of the designs

belonging to a specific domain as a function of the parameters associated with the
domain.
The domain-specific nature of our energy modeling is exploited when the designer

identifies the level of architecture abstraction (RModules and Interconnects) appro-
priate to the domain and/or chooses the parameters to be used in the component-
specific power functions. This is a human-in-the-loop process and exploits the
designer’s expertize in the algorithm and the architecture family that constitutes the
domain. Well-known power models based on capacitance, voltage, and switching
activity can be more accurate and are generic to be applicable across many domains.
However, they do not provide a designer a clear understanding of the impact of his/
her algorithmic level design choices on the energy performance. Our modeling
enables the designer to rapidly explore a large design space based on the under-
standing of the effect of the design choices on the overall energy performance.
To handle modeling complexity we follow a hierarchical approach. Each

RModule can be recursively divided into RModules and Interconnects. This
hierarchical nature allows the designer to capture the details of architecture in the
design at various levels of abstraction to identify parameters affecting performance.

3.2. Component specific power function estimation

Power dissipation by a RModule or Interconnect in a particular state is captured as a
power function of a set of parameters. These functions are typically constructed
through curve fitting based on some sample low-level simulations. We demonstrate
our function estimation technique in detail by deriving the power function for a
register-based memory implemented on the Xilinx Virtex-II device. Figure 3(a)
summarizes the technique. This technique was applied for power function estimation
during the modeling of the various domains described in Section 4.
Let C:p ðp1; . . . ; pnÞ be the component power function and p1; . . . ; pn be the

parameters associated with the component. Estimation of the component-specific
power function involves estimation of power dissipation through low-level
simulation of the component at different design points. A design point is a unique
combination of parameter values. For our chosen component, a register based
memory, we used the basic register design provided by the Xilinx library. The
component specific parameters are frequency of operation, number of registers in a
memory, and the precision. We decided not to vary the precision and assumed it to
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be 8-bit. Therefore the parameters that affect energy dissipation of the memory are
number of registers ðrÞ and frequency ð f Þ. Let ðr, f Þ denote a design point. We
identified the candidate designs randomly (for low-level simulation) to be the
combinations of r ¼ 1; 4; 8 and f ¼ 10; 50; 150MHz.
The designer associates a VHDL implementation with each RModule. These

VHDL implementations are parameterized based on the parameters supported by
the associated RModule. Low-level simulation is performed at each of the chosen
design points to estimate the power dissipation at that design point. We use random
input vectors since there is no general purpose technique to predict exactly what data
is available as input to a component. However, we have developed a technique based
on statistical analysis to obtain reasonably accurate average estimate of power
dissipation of a design [8]. We utilize confidence intervals about the sample mean
energy dissipation for a design. Confidence intervals allow us to address dependency
upon input stimuli because they describe the likelihood that the true mean over an
entire population is within a certain range of the mean found from a sample out of
the population. Equation x+ za=2ðs=

ffiffiffiffiffi
M

p
Þ is employed to estimate the confidence

interval for our simulations where x is the sample mean (the mean found by
experiment), a is a number between 0 and 1, za=2 is a constant as explained in Hogg
and Tanis [6], s is the population standard deviation, and M is the number of
samples. We assume that the distribution from which the results come is not too
badly skewed or discrete.
For example, to statistically analyze energy dissipation for the matrix multi-

plication in Section 4.2, we performed 50 different n6n matrix multiplication trials
for our linear architecture. Each trial consists of performing the low-level simulation
procedure, as described above, with the uniformly distributed, randomly generated
matrices as input.
These power estimates and the design points are provided as inputs to the power

function builder. For components with a single parameter, the power function are
obtained using curve-fitting on sample simulation results. In case of more number of
the parameters, surface fitting can be used. Currently, we only focus on building
component power functions with at most two parameters. The resulting power
functions are provided to the designer. We have used Microsoft Excel for power

Figure 3. (a) Power function estimation and (b) register power function as a function of the number of

registers ðrÞ and frequency ð f Þ.
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function estimation. Figure 3(b) shows the graph based on sample simulation results
of different design of the register based memory. The power function, based on the
graph is R:pðr; f Þ ¼ 0:0142 ? r ? f þ 0:0011.
The component power function of an interconnect depends on its length,

operating frequency, and the switching activity. Unfortunately, estimating the
interconnect length requires the knowledge of the placement of the physical
implementation of the components. In Xilinx Virtex-II device, various routing
resources can be identified based on long, hex, double and direct wires. After
performing synthesis and simulation, we can obtain the number of different wires
used from a XDL file which is the text version of place and routed circuit description
(.ncd file) [22]. The power function of an Interconnect component is I :pðL;wÞ ¼
ð1=2ÞV2 ? f ? sw ? ðCl ? l þ Ch ? h þ Cdb ? db þ Cdr ? drÞ where V is voltage, f is the
operating frequency, sw is the average switching activity, L is the length of an
interconnect, w is the precision (or width), and Cl ;Ch;Cdb;Cdr and l; h; db; dr are the
average capacitance and number of long, hex, double, and direct wires respectively
[19].
However, since the architectures we are currently consider has neighboring

connections, we use a simplified approach. We use Equation (1) to estimate power
dissipation in an interconnect. F:p denotes the power dissipation of a cluster of k
RModules connected through the candidate interconnect and M ? pi represents
power dissipation of the i-th RModule. The power dissipated by the cluster and
RModules are obtained by low-level simulation:

IC:p ¼ F:p �
Xk

i¼1
M:pi

: ð1Þ

The low-level simulation is performed as follows. The sample VHDL design is
synthesized using XST (Xilinx Synthesis Technology) on Xilinx ISE 4.1i. The place-
and-route file (.ncd file) is obtained for the target FPGA device using PAR. Mentor
ModelSim 5.5e is used to simulate the module and generate simulation results (.vcd
file). These two files are then provided to the Xilinx XPower tool to estimate the
energy dissipation. Above simulation technique was also applied to the candidate
designs to estimate power which was multiplied with latency to obtain the measured
energy estimates shown in Tables 3 and 4.
While the initial effort to build the component power function might be expensive,

the benefits are noticeable when the same components are re-used in different designs
within and (possibly) across domains.

3.3. Deriving system-wide energy function

The CPS matrices capture the operating state of each component for every cycle and
the power functions provide the power estimate for each state. Therefore, the total
energy of the complete system is obtained by summing the energy dissipation of
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individual components in each cycle. The system-wide energy function SE is
obtained as:

SE ¼
Xk

i¼1

1

f

Xnl

j¼1

XT
t¼1

Ci:p:ps

 !
where ps ¼ CPSði; t; jÞ; ð2Þ

Ci:p:ps is the power dissipated in the j-th component ð j ¼ 1; . . . ; nlÞ of type i during
cycle t ðt ¼ 1; . . . ;TÞ and f is the operating frequency. CPSði; t; jÞ is the power state
of the j-th component of the i-th type during the t-th cycle. Many state-of-the-art
FPGAs feature multiple clock domains. However, we focus on the design of signal
processing kernels which typically perform an atomic task such as FFT, DCT, filters,
etc. Therefore, we consider a single clock frequency for the complete kernel design.
Since the system-wide energy function is derived using component specific power

functions, the energy distribution among various components (the fraction of the
total energy dissipated by each component) can be obtained. This information is
used to identify candidate components to be considered by the designer for energy
optimization. Details can be found in Section 5.
Due to the high-level nature of the model, we can rapidly estimate the system-wide

energy. In the worst case, the complexity of energy estimation is O
�
T6

Pk
l¼1 ni

�
(see

Equation (2)) which corresponds to iterating over the elements of the CPS matrices
and adding the energy dissipation by each component in each cycle. However,
typically, there is a repeating pattern of state changes for a component (for example,
due to loop structures within the algorithms). Also, different components of the
same type dissipate the same amount of energy during each cycle. Therefore, based
on these observations the time to compute the energy is better than the worst case
complexity of energy estimation stated above. Further, even if we compute the
system-wide energy based on each cycle we do not analyze the activities at the level
of individual gates. Typically, there are only a few distinct components within a
domain that affect energy dissipation of the designs in that domain. Indeed, for the
illustrative examples considered in this paper, the time for energy estimation does not
depend on the problem size.
The time needed to perform high-level estimation (assuming the power functions

are pre-computed) is on the order of minutes on a Pentium III Xeon running at
700MHz, whereas the time needed for low-level simulation and power estimation
was 3–24 hours per design on the same machine. For the domains discussed in this
paper, we typically need 4–8 low-level simulations (one for each design point) for
each power function. Once all power functions are computed and the system-wide
energy function is derived, they are applied to the complete design space. For
Domain 2 (Section 4.2), the number of low-level simulations performed to define the
domain-specific models were approximately 30. As these simulations are for a
component not the complete design each low-level simulation takes approximately
30 to 60 minutes. The model is applicable to all the design of n6n matrix
multiplication where 1 � n � 48 (we chose 20 designs). Therefore, our effort
approximately takes 10–12 hours of simulation and computation which is very small
when compared with approximately 2 weeks needed to simulate 20 designs.
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4. Illustrative examples of domain-specific modeling

To illustrate our domain-specific modeling methodology, we apply the techniques
discussed in the previous section to define high-level models for four different
domains implementing matrix multiplication and fast Fourier transforms (FFT),
two frequently used kernel operations in wide variety of signal processing algorithms
(ElGindy and Shue, 2002). For each domain, we identify the components and the
component specific parameters, evaluate the power functions for each component,
and finally derive a system-wide energy function. Three architecture families, a
uniprocessor architecture, a homogeneous linear array architecture, and a
heterogeneous linear pipelined architecture are chosen to demonstrate our approach.
We have chosen the Xilinx Virtex-II FPGA (XC2V1500, speed grade-5) as our target
device.

4.1. Domain 1: Uniprocessor architecture

We define a uniprocessor (PE) implementing the ‘‘usual’’ block matrix multiplication
(BMM) as the first domain. This domain uses a single multiplier and results in
compact energy-efficient designs. There are two possible scenarios: on-chip design
and off-chip design. If the matrix multiplication kernel is a stand-alone application,
all matrix data are stored in an external memory outside the FPGA. We refer to such
a design as off-chip design. If the matrix multiplication kernel is one of many kernels
in an application, it is desirable to have the matrix data reside (in a Block SRAM) on
the device. We refer to such a design as on-chip design. The Block SRAM is a
dedicated on-chip memory in Virtex-II and is usually used for storing intermediate
data between (kernel) computations. Figure 4 shows our target architectures.
In the off-chip design, the PE has one MAC (multiplier and accumulator), a cache

(local buffer) of size c, and I/O ports (see Figure 4(a)). Each word of cache is three 8-
bit registers. The data matrices are stored in an external memory. For n6n matrix
multiplication, the computational complexity of the algorithm is Oðn3Þ [7]. Block
matrix multiplication is performed with block size

ffiffiffi
c

p
6

ffiffiffi
c

p
. The I/O complexity

(amount of traffic between the PE and external memory) is Oðn3=
ffiffiffi
c

p
Þ. It can be

Figure 4. Uniprocessor architecture: (a) off-chip design and (b) on-chip design.
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observed that a large cache decreases the I/O traffic and as a result improves the
energy dissipation in performing I/O.
In the on-chip design, the PE has one MAC, a cache of size c, and three memory

banks for storing three matrices (see Figure 4(b)). BMM is performed with block sizeffiffiffi
c

p
6

ffiffiffi
c

p
. The energy for I/O (outside the device) is not included, but the energy

dissipated in the three memory banks is considered. The read/write access frequency
of the memory banks depends on the traffic between the memory banks and the PE.
It can be observed that as the cache size increases, the number of memory bank
accesses decreases and as a result the energy dissipated in the memory banks reduces.

4.1.1. Defining components and parameters. We identified four components:
MAC, cache, and the memory banks as RModules, the I/O as an Interconnect.
The RModules have w bit precision. We assumed the precision of input data to be 8
bits and the precision of the intermediate and the output data to be 16 bits.
Therefore, the cache size ðcÞ is the only parameter that can be varied at design time.
The component specific power functions for MAC ðMAC:pÞ, cache ðR:pÞ, I/O

ðIO:pÞ, and memory bank ðMEM:pÞ were obtained through low-level simulation
using the method described in Section 3.
To implement the MAC in Virtex-II, there are two design choices: a CLB-based

multiplier and a dedicated multiplier. A dedicated multiplier is a stand-alone ASIC-
based multiplier. A CLB-based multiplier is built using CLBs and it was observed
that it dissipates more power than a dedicated multiplier. Similarly, there are two
design choices for implementing the cache using CLBs. If the cache size is small, the
cache can be realized using CLBs configured as register modules. Larger cache can
be realized using CLBs configured as SRAM [22]. However, a SRAM-based cache
can only be configured to be a multiple of 16 bytes. We noticed that for c > 6, the
SRAM-based cache dissipates less power than the register-based cache of the same
size. The caches for matrix A and B has 8 bit precision and for matrix C, 16 bit
precision. MAC:p and IO:p are constants. The power function for the register-based
cache is: R:pðcÞ ¼ 2:12c (mW) for 8 bit precision. The power function for 16 bit
register is 2R:pðcÞ. The power function for the SRAM-based cache is:
R:pðcÞ ¼ 0:12ðdc=16eÞ2 þ 4:52dc=16e þ 7:81 (mW). The memory bank is implemen-
ted using Block SRAM in Virtex-II. The power state of Block SRAM can be
controled by gated clocking. However, there is not much difference ð< 2%Þ in the
power dissipation between the on and off states. Instead, the power dissipated in
Block SRAM depends mainly on the access frequency ð fmÞ of the memory bank. A
Block SRAM can be configured to be a multiple of 2K bytes with 8 bit precision.
The power function for 2K byte Block SRAM is: MEM:pð fmÞ ¼ 2:89fm2þ
25:79fm þ 0:29 (mW):

4.1.2. System-wide energy function. We now consider the system-wide energy
dissipated by the design. In both the on-chip and off-chip designs, the amount of
computation performed by the MACs is the same and the MACs dissipate the same
amount of energy. For the off-chip design, we do not consider the energy dissipated
in the external memory. The system-wide energy function ðSEÞ for performing n6n
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matrix multiplication is:

SEðn; cÞ ¼ 1

f
n3MAC:p þ 4 n3 þ n3ffiffiffi

c
p

� 	
R:pðcÞ þ 3

n3ffiffiffi
c

p
� 	

IO:p

� 	
: ð3Þ

Note that as c varies, we obtain a family of architectures each implementing matrix
multiplication using BMM with different block sizes. The operating frequency of our
design was set to 166MHz. Figure 5 shows how different values of c affect the
system-wide energy dissipation and the energy distribution among the components
of the design for 12612 matrix multiplication. As c increases, the energy for
performing I/O decreases but the energy dissipated in the cache increases. Initially,
the system-wide energy decreases as c increases but for large values of c, the system-
wide energy increases.
For the on-chip design, the energy dissipated in the memory banks is considered

instead of the energy dissipated in the I/O. The system-wide energy function is:

SEðn; cÞ ¼ 1

f
n3MAC:p þ 4 n3 þ n3ffiffiffi

c
p

� 	
R:pðcÞ þ 3

n3ffiffiffi
c

p
� 	

MEM:p

� 	
: ð4Þ

Note that as c increases, the traffic between the memory banks and the PE
decreases and as a result the energy dissipated in the memory banks decreases.

4.1.3. Design trade-offs and performance analysis. As the system-wide energy
function is a well-behaved function with easily determinable minima, we were able to
identify the most energy-efficient designs from the trade-off graphs (see Figure 5).
For both designs, the cache size c ¼ 16 gives the minimum system-wide energy. Since
I/O operations are expensive, using larger cache helps to reduce the energy for off-

Figure 5. System-wide energy dissipation and energy distribution for 12612 matrix multiplication as a

function of cache size: (a) off-chip design and (b) on-chip design.
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chip design. However, as the cache size increases, its energy dissipation becomes
dominant and the system-wide energy increases. For the on-chip design, the energy
for Block SRAM is not as significant as the energy for I/O. All designs use a single
dedicated multiplier.

4.2. Domain 2: Linear array architecture

For the second domain, we consider a linear array of processing elements (PEs) as
the candidate architecture (see Figure 6(a)). Each PE has one multiplier and storage.
We start with an algorithm for optimal latency on linear array [14]. PEj in Figure
6(a) computes cij ¼

Pn
k¼1 aik6bkj for all i; 1 � i � n where aik; bkj, and cij represent

an element of n6n matrices A, B, and C. In iteration ði; kÞ; 1 � i; k � n; cij ¼
cij þ aik6bkj is computed in PEj. Elements of matrix A and B are fed to the array via
two input ports of PE1 in column major and row major order, respectively. It is
critical to ensure that aik ‘‘meets’’ bkj in a cycle in PEj. For this, aik and bkj pass
through two and one delay(s), respectively in each PE. The resulting architecture for
each PE is shown in Figure 6(b). aik enters input port AS and goes through two
delays (AS.LR and AS.RR), while bkj enters BS and goes through one delay. Details
of the algorithm, its analysis, and proof of correctness can be found in Prasanna and
Tsai [14].
Compared with the uniprocessor design in Section 4.1, we use more multipliers to

reduce the latency. The above family of architectures offers several advantages
compared to other architecture families. These architectures have a low I/O-
bandwidth requirement and they scale as the problem size grows. To achieve the
minimal I/O complexity ðOðn2ÞÞ, the total amount of storage across all the PEs
should be n2. As shown in Prasanna and Tsai [14], this architecture can perform n6n
matrix multiplication in Oðn2Þ time using ndn=se PEs. For the sake of illustration, we
consider the on-chip design for this domain.

Figure 6. Architecture for matrix multiplication, PE organization, and corresponding algorithm.
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4.2.1. Defining components and parameters. The structure of the linear array is
shown in Figure 6(a). It consists of three components: processing elements (PEs),
buses connecting adjacent PEs, and memory banks. For the purpose of high-level
modeling, we identified the PE and the memory bank as RModules, and the bus
between two adjacent PEs as an Interconnect. The PE has a MAC of precision w and
storage of size s (see Figure 6(b)). The MAC is implemented using a dedicated
multiplier. The PE has two power states on and off. In the on state, the multiplier is
on and thus the PE dissipates more power than in the off state when the multiplier is
off. The power state of the multiplier is controlled by clock gating. The PE also
includes six registers and three multiplexers of w bits. The key parameters affecting
energy are the number of PEs ðpeÞ, the amount of storage within a PE ðsÞ, and power
states ðpsÞ.
We implemented the PE using a Virtex-II FPGA operating at f ¼ 166MHz and

performed simulations to obtain the power functions for the PE and the bus. The
power function for the PE is:

PE:p:ps ¼
7:01s þ 31:04mW ðps ¼ onÞ
7:01s þ 14:04mW ðps ¼ off Þ



: ð5Þ

The interconnect power function is constant. It is estimated using Equation (1) since
the interconnect between the PEs is localized in the design and is regular. We
implemented two PEs and the interconnect, and measured the power dissipation
while both PEs are in ON state. The power dissipated in the interconnect is
IC:p ¼ 39:74mW. The power function for the memory bank is the same as in the
uniprocessor architecture (see Section 4.1.1).
We consider the problems of size 1 � n � 16. For the sake of illustration, we fixed

w at 8. The parameters and their ranges are shown in Table 1. Note that the
parameters of interest are pe, ps, and s. The system-wide energy function is specified
using these three parameters.

4.2.2. System-wide energy function. There are several constraints imposed by the
algorithm which is exploited to identify component specific parameters and their
ranges. The value of s determines the total number of PEs ðpeÞ. The latency ðTÞ of
this design using ndn=se PEs and s storage per PE [14] is: T ¼ ðn2 þ 2ndn=se
�dn=se þ 1Þ.
We consider problems in the range 1 � n � 16. Precision ðwÞ is set to 8. In each

PE, the multiplier is on for T=ðdn=seÞ cycles and is off for T6ð1� 1=dn=seÞ cycles.
PE:p:ps refers to the power dissipation of PE when its multiplier is in state ps (see
Equation (5)). Note that the I/O traffic between the PEs and the memory banks is

Table 1. Model parameters

Parameters s pe w ps

Values or ranges 1 � s � n 1 � pe � ndn=se 8 on, off
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Oðn2Þ. The system-wide energy function is:

SEðn; sÞ ¼ 1

f
n ?T ?PE:p:ps¼on þ T ? ðn n

s

l m
� nÞ ?PE:p:ps¼off


þT ? ðn n

s

l m
� 1Þ ? IC:p þ 3n2 ?MEM:p

�
ð6Þ

4.2.3. Design trade-offs and performance analysis. Figure 7(a) shows the effect of
varying the amount of storage ðsÞ on the power dissipation of a PE. Figure 7(b)
shows the effect of varying the amount of storage ðsÞ on the system-wide energy for
three problem sizes ðn ¼ 4; 8; 16Þ. Based on these plots, to obtain energy-efficient
designs we choose pe ¼ s ¼ n, where n is the problem size.
Table 2 shows the energy, latency, and area of the designs for various problem

sizes. We compared the performance of our design with a design for 363 matrix
multiplication provided by Xilinx [22]. Since Xilinx library does not provide on-chip
design, we added Block SRAMs to the Xilinx design. All Xilinx designs execute at
150MHz. For n > 3, we used block matrix multiplication using the 363 design. The
improvement in energy dissipation and latency in our designs compared with the
Xilinx designs are also shown. On the average our designs dissipate 32% less energy
compared with the Xilinx design. The latency improvement varies from 5:86 to
17:36. However, our designs occupy more area.
The energy dissipation of the designs discussed in this section is based on high-

level estimation using the system-wide energy function for the domain. In order to
validate these energy estimations, we performed the following experiment. For a
particular design, we used the corresponding system-wide energy function to
estimate the total energy dissipation. We compared this result with a complete
VHDL simulation of the design using Xilinx tools described in Section 3.2. In the
simulations, the same input data used to obtain the component specific power
functions were used. As noted earlier, the average switching activity was observed to

Figure 7. (a) Power dissipation for a single PE and (b) the system-wide energy as a function of the

amount of storage ðsÞ for n ¼ 4; 8; 16.
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be 50%. We performed this experiment for various problem sizes using designs in
Section 4.2.2. Table 3 also shows the error percentage of our high-level estimation
method when compared with energy estimation values obtained through low-level
simulation. The error percentages are below 9.0%.

4.3. Domain 3: Block matrix multiplication on linear array architecture

The third domain targets large size ðn > 12Þ matrix multiplications. It consists of
block matrix multiplication (BMM) and the linear array architecture presented in
Domain 2. The BMM algorithm for N6N matrices repeatedly uses the design
(hardware) for sub-matrix multiplication of size n6n, where N is a multiple of n. In
this domain, we have considered the off-chip design.

4.3.1. Defining components, parameters, and system-wide energy function. All
components defined in Domain 2 are also applicable to this domain. An additional
parameter is the block size ðnÞ. For a blocksize of n, we chose the designs with
pe ¼ s ¼ n and ps ¼ on to implement n6n matrix multiplication. Based on our
performance trade-off analysis of Domain 2 (Figure 7) these designs are the most
efficient ones in terms of latency and energy dissipation for n6n matrix
multiplication. Since N6N matrix is divided into n6n sub-matrices, ðN=nÞ3 block
matrix multiplications are performed. Therefore, the latency is: T ¼ ðN=nÞ36
ðn2 þ 2nÞ=f . Therefore, the system-wide energy function is:

SEðN; nÞ ¼ ðnT ?PE:p:ps¼on þ ðn � 1ÞT ? IC:p þ 3T ? IO:pÞ ð7Þ

Table 2. Comparison of our designs on linear array architecture with Xilinx design

Matrix size

Design based

on Xilinx library

Design based on

linear array architecture

Performance

improvement

n6n T (usec) A (slices) E (nJ) T (usec) A (slices) E (nJ) E (%) T (times)

666 1.71 251 292.40 0.30 1,074 213.2 37 5.8

969 5.76 251 986.86 0.30 1,935 715.5 38 9.6

15615 26.67 251 4,568.80 1.54 4,305 3,812.5 20 17.3

Table 3. Accuracy of the high-level energy estimation of our designs

Matrix size ðn6nÞ 363 666 868 969 12612 16616

Estimated energy (nJ) 34.0 213.2 497.8 715.5 1,801.2 4,759.7

Measured energy (nJ) 37.4 228.6 536.9 768.4 1,913.6 5,078.6

Error 9.0% 6.7% 7.3% 6.9% 5.9% 6.3%

DOMAIN-SPECIFIC MODELING FOR RAPID ENERGY ESTIMATION 275



4.3.2. Design trade-offs and performance analysis. We vary the block size ðnÞ to
evaluate various trade-offs. Table 4 shows the area, latency, and energy of 24624
and 48648 matrix multiplication using various block sizes. Results show that the
matrix multiplication for N ¼ 24 dissipates least energy when n ¼ 12. To verify our
result we simulated all the designs that are within 10% of the optimal design in terms
of energy dissipation. Through low-level simulation (Table 4) design with n ¼ 12 is
verified as the most energy-efficient design for 24624 matrix multiplication. For
48648 matrix multiplication, the design using 16616 block matrix multiplication is
the most energy-efficient design. Note that, our estimations based on the system-
wide energy function are within 10% of the estimation using low-level simulations.

4.4. Domain 4: Fast Fourier transform

Fast Fourier transform (FFT) on a heterogeneous linear pipelined architecture is
chosen as the fourth domain. We use the well-known Cooley-Tukey method. The
calculation of an n-point FFT requires OðnÞ operations for each of its log2 ðnÞ stages,
so the total computation is Oðn log2 nÞ [13]. Due to the fact that, in practice, FFTs
often process a stream of data, a pipelined architecture has been chosen.

4.4.1. Defining components, parameters, and system-wide energy function. The n-
point FFT design is based on the radix-4 algorithm and has three components in the
architecture: radix-4, data buffer, and twiddle factor computation (see Figure 8):

. The radix-4 butterfly block performs a set of additions and subtractions with 24
adders/subtracters. It takes four inputs and produces four outputs in parallel.

Table 4. Performance comparison and accuracy of various designs in Domain 3

Estimated Measured

Matrix size Block size T (cycles) A (Slice) E (nJ) T (cycles) A (Slice) E (nJ)

24624 868 2,187 1,048 5,271 2,187 1,101 5,491

12612 1,352 1,572 4,757 1,352 1,667 4,983

48648 868 17,496 1,048 42,164 17,496 1,101 43,929

12612 10,816 1,572 38,053 10,816 1,667 39,867

16616 7,803 2,096 36,100 7,803 2,186 37,679

Figure 8. (a) Data buffer (Dbuf), (b) Twiddle factor computation (Twiddle), and (c) Radix-4

computation.
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. The twiddle factor computation block performs the multiplication of the data with
twiddle factors. The twiddle factors are obtained from a sine/cosine lookup table.
Bypassing the multiplication when the value of twiddle factors is 1, � 1, j, or � j
can reduce computation and thus energy (by disabling the multipliers). This block
contains four multipliers, two adders/subtracters and two sign inverters.

. The data buffer consists of two RAMs having n entries each. Data is written into
one and read from the other RAM simultaneously. The read and write operations
are switched after every n inputs. The data is written into sequential locations and
the data is read out from locations at strides of 4. The RAM is implemented using
SRAM for n < 64 or Block SRAM for n 
 64.

The architecture uses a combination of the above three components. There are
three parameters that produce n-point FFT designs: (1) the problem size ðnÞ, (2) the
degree of horizontal parallelism ðHpÞ, and (3) the degree of vertical parallelism ðVpÞ.
The horizontal parallelism determines how many radix-4 stages are used in parallel
ð1 � Hp � log4 nÞ. For example, a 16 point FFT algorithm has two radix-4 stages. In
the design, we can use one or two radix-4 blocks ðHp ¼ 1; 2Þ depending on the
sharing of radix-4 block resource. If Hp ¼ 1, one radix-4 block is used and is shared
by the first and second stages. Thus a feedback datapath is necessary which decreases
the throughput of the design (see Figure 9(a)). Vertical parallelism determines how
many inputs are computed in parallel. Using the radix-4 block, up to four inputs can
be operated on in parallel. Figure 9(b) shows a fully parallel architecture for n ¼ 16
when Vp ¼ 4;Hp ¼ 2. This design has 12 data buffers, two radix-4 blocks, and three
twiddle computation blocks.
The power functions for the data buffer, the radix-4 block, and the twiddle

computation block are PDbuf ;Pradix�4, and PTw, respectively, where PDbuf ¼ 1:23nþ
35:44 (mW) using SRAM, PDbuf ¼ 0:0156n þ 79:65 (mW) using BRAM, PRadix�4 ¼
142:84 (mW);PTw ¼ 0:0054n þ 183:57 (mW) using Block SRAM, PTw ¼ 0:4879x þ
157:74 (mW) using SRAM, and PIO ¼ 11:31VP (mW). The latency becomes:
T ¼ ðn log4 nÞ=ðVp6HpÞ=f . The system-wide energy function is

E ¼ TðVpðHp þ 1ÞPDbuf þ HpPradix�4 þ tPTwÞ; ð8Þ

Figure 9. (a), (b) Architectures of 16-point FFT and (c) energy dissipation and area of 16-point FFT for

various values of Hp;Vp (100MHz, 16 bits per data).
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t is the number of twiddle computation blocks and is calculated as follows:

t ¼

ðVp � 1ÞðHp � 1Þ when ðHp ¼ log4 n & Vp ¼ 4Þ
VpðHp � 1Þ when ðHp ¼ log4 n & Vp < 4Þ
ðVp � 1ÞHp when ðHp < log4 n & Vp ¼ 4Þ
VpHp when ðHp < log4 n & Vp < 4Þ:

8>><
>>: ð9Þ

4.4.2. Design trade-offs and performance analysis. We vary the parameter values
to analyze the energy variation based on the architectural changes. Figure 9(b) shows
the energy dissipation and area of various design points for n ¼ 16. It shows that
more parallelism increases the energy efficiency of the FFT design despite increasing
the area requirement.
We compared estimates from the functions against actual values based on

synthesized designs and low-level simulation as described in Section 3. The input test
vectors for the simulation are randomly generated and its average switching activity
is 50%. We observed that the estimation error using our functions (see Table 5) is
below 15% for energy dissipation.

5. Design methodology using the model and energy optimization

Our domain-specific modeling provides an energy estimation methodology to
facilitate design decisions in the early phases of the design cycle. The system-wide
energy function captures the impact of the architecture parameters on the system-
wide energy at the algorithmic level. Using this, the designer identifies trade-offs
among area, latency, and energy and explores a domain and identifies an appropriate
design based on a selection criteria [4, 11]. Also, using our model and design
methodology, the designer can further optimize a chosen design by improving the
performance of the components that dissipate the significant energy. Initially, the
system-wide energy function is analyzed to identify the distribution of energy
dissipation among various types of components. Components with higher
percentage of energy dissipation are chosen as possible candidates for design
modification.
Design 1 in Figure 10(a) and (b) shows the distribution of energy dissipation

among various components for the best design for n ¼ 3; 12 identified in Section 4.2.
47% and 76% of the energy is dissipated in registers for problems of size 363 and
12612, respectively. Note that bulk of energy is dissipated in registers. Also, it is

Table 5. Energy dissipation for FFT (from low-level simulation)

Problem size (n) Hp Vp T (usec) Estimated E (nJ) Measured E (nJ) Error

16 2 1 0.16 75.98 88.54 14%

2 4 0.04 45.41 52.59 14%

64 3 1 0.64 600.461 578.57 4%

3 4 0.16 402.371 350.92 15%
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hard to reduce energy dissipation in multipliers and I/O ports without increasing
latency (hence energy dissipation). Thus, effort at algorithm and architecture level
must be directed at reduction of the number of registers.
Based on above observations, we modify the algorithm or architecture in such a

way that the number of registers are minimized. The result is denoted as Design 2
shown in Figure 10(c). Various mapping techniques are developed to reduce the
number of registers from 2n2 þ 6n to n2 þ 4n. For example, two registers (AS:LR
and AS:RR) in Figure 6(b) are replaced by one register (A) by feeding elements of
matrix A n cycles after those of matrix B.
Careful analysis of data movement reveals that only two registers (B.T1 and B.T2)

are enough to store the elements of matrix B. Figure 10(a) and (b) shows that, in
Design 2, energy dissipation is reduced by 16% and 25% for problems of size 363
and 12612, respectively. Amount of energy dissipation in registers is reduced from
47% and 76% to 32% and 51%, respectively.
Besides reduction of energy at architecture and algorithm level, further reduction

is possible at implementation level. For example, the registers to store intermediate
results (c in Figure 10(c)) can be replaced by CLB-based SRAMs to reduce power
per element. However, the minimum number of words for the SRAM in the target
FPGA is 16.
The result is shown as Design 3 in Figure 10. Compared with Design 1, energy

dissipation is reduced by 23% and 62% for problems of size 363 and 12612,
respectively. Proportion of energy dissipation in registers is further reduced to 24%

and 14%, respectively.

6. Conclusion

This paper introduced domain-specific energy modeling for rapid system-level energy
estimation and algorithmic level optimization for reconfigurable architectures. The
modeling captures the details of the architecture and the algorithm to identify
parameters affecting the power performance, hence facilitating derivation of a
system-wide energy function. Matrix multiplication on a uniprocessor and a linear
array architecture and FFT on a heterogeneous linear pipelined architecture were

Figure 10. Change in distribution of energy among components during optimization for problem sizes

(a) 363 (b) 12612, and (c) architecture of the PE used in Design 2, 3.
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chosen as example domains to illustrate construction of a high-level model,
derivation of power functions for individual components, and combine them to
obtain an system-wide energy function. The reference low-level energy evaluations
were obtained on a Virtex-II device. For specific domains, the system-wide energy
function was tested on several sample designs for its accuracy against time-
consuming low-level energy estimation. The error in the system-wide energy
estimation using the high-level model ranged from 7% to 15%.
Our modeling technique provides a virtual malleable data path. It is virtual

because at the time of performance estimation we do not implement the design on
target FPGAs. It is malleable because there are several parameters that can be varied
to understand the trade-offs between different performance metrics such as energy,
area, and latency. Such a characteristic makes our proposed model suitable to be
considered during large application synthesis where several different kernels are
integrated to implement a system such as MPEG encoding or Software Defined
Radio. In such scenarios, once we have models for various kernel implementations,
we can exploit the multi-level design space exploration technique provided in the
MILAN framework [11]. Model-based Integrated SimuLAtioN (MILAN) is a model
based extensible framework that facilitates rapid, multi-granular performance
evaluation of a large class of embedded systems, by seamless integration of different
widely used simulators and design tools into a unified environment. MILAN can be
used to provide graphical interface for domain-specific modeling, automate power
function estimation, and generation of energy profile based on the system-wide
energy function.
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