
Minimizing Energy Dissipation of
Matrix Multiplication Kernel on Virtex-II

Seonil Choia, Viktor K. Prasannaa, Ju-wook Jangb

aElectrical Engineering-Systems, University of Southern California, Los Angeles, USA
bElectronic Engineering, Sogang University, Seoul, Korea

ABSTRACT

In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy
dissipation, we develop a high-level model using domain-speciÞc modeling techniques. In this model, we identify
architecture parameters that signiÞcantly affect the total energy (system-wide energy) dissipation. Then, we
explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix mul-
tiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient
designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and
the system-wide energy. For the linear array architecture, the amount of storage per processing element is a
parameter affecting the system-wide energy. By using maximum amount of storage per processing element and
minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several
energy-efficient designs for matrix multiplication. For example, for 6× 6 matrix multiplication, energy savings
of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an
optimized library for Virtex-II FPGA from Xilinx.

Keywords: matrix multiplication, domain speciÞc modeling, energy efficient design, FPGAs.

1. INTRODUCTION

With the advent of multi-million gate reconÞgurable devices, high-level algorithms are being mapped onto FP-
GAs. Some reconÞgurable system-on-chip (SOC) platforms offer implementation of signal processing algorithms
directly in hardware. These solutions offer improved performance capability compared with DSP-based solu-
tions. FPGAs have also become attractive platforms to meet the processing requirements of mobile devices. As
mobile devices operate in power constrained environments, in addition to time performance, energy efficiency
has become a critical performance metric for FPGA-based designs.12

Matrix multiplication is a frequently used kernel operation in many mobile applications. Most of the previous
work in performing matrix multiplication on FPGAs has focused on latency optimization.2, 6 We develop designs
which minimize the energy dissipation and offer trade-offs for performing matrix multiplication on commercially
available FPGAs. Our effort is focused on algorithmic techniques to improve energy performance instead of
low-level (implementation level) optimizations.

To develop energy-efficient designs, we use domain-speciÞc modeling techniques that were proposed in Ref. 5.
First, we deÞne a domain as a family of architectures and corresponding algorithms to implement matrix
multiplication. Then, the architecture parameters that signiÞcantly affect the system-wide energy of the domain
are identiÞed. The resulting high-level model has various parameters such as operating frequency, memory
capacity, I/O bandwidth, and precision that allow us to choose appropriate settings to minimize the energy.
The high-level model also provides an energy function to rapidly estimate the system-wide energy of a design.

Further author information: (Send correspondence to Viktor K. Prasanna)
Viktor K. Prasanna: E-mail: prasanna@usc.edu, Telephone: 1 213 740 4483, Fax: 1 213 740 4418, Address: 3740
McClintock Ave. EEB-200C, Los Angeles, CA 90089-2562, USA.
Seonil Choi: E-mail: seonil@halcyon.usc.edu
Ju-wook Jang: E-mail: jjang@sogang.ac.kr

Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing and Communications
IV, John Schewel, Philip B. James-Roxby, Herman H. Schmit, John T. McHenry, Editors,

Proceedings of SPIE Vol. 4867 (2002) © 2002 SPIE · 0277-786X/02/$15.00
98

The energy function provides an energy distribution proÞle that can be used to identify possible energy savings
in a design.

Several designs for matrix multiplication were proposed in Ref. 5, 11. The designs in both papers focus on
minimizing the energy dissipated in the processing elements and I/O buses. However, if matrix multiplication
is part of a large application, the matrix data is usually stored in the memory banks on the FPGA. Storing
and accessing data from the memory banks dissipates signiÞcant amount of energy. In this paper, we also
consider the energy dissipated in the memory banks. The I/O complexity affects the amount of memory access
and as a result signiÞcantly affects the system-wide energy dissipation. Virtex-II series have Block SRAMs (of
size 18K bits each). We utilize this feature for implementing the memory banks. We also propose a compact
energy-efficient design which uses approximately the same area as a design in the Xilinx library.

We develop designs for two domains and compare their performance with a vendor speciÞed matrix mul-
tiplication kernel to demonstrate the energy performance improvements. Our designs demonstrate superior
energy dissipation performance compared with designs in the literature that use approximately the same area
or execute in the minimum time. The design in the Þrst domain occupies approximately the same area as the
Xilinx design17 and achieves 52% energy reduction compared with a solution based on the Xilinx design. The
designs in the second domain are generated for various problem sizes. The latency of these designs is smaller
than those in the Þrst domain. These designs dissipate 26-36% less energy compared with the solutions based
on the Xilinx design.

The rest of the paper is organized as follows. The next section discusses energy modeling and our design
methodology. Section 3 describes algorithms and architectures for energy-efficient designs for matrix multiplica-
tion using two domains. We derive system-wide energy functions and illustrate various trade-offs. We conclude
in Section 4.

2. DOMAIN SPECIFIC MODELING AND DESIGN METHODOLOGY

We follow the design methodology presented in Ref. 11. The methodology generates a set of designs which
provide trade-offs among energy, latency, and area. The design methodology is illustrated in Figure 1. In the
following, for the sake of completeness, we brießy outline the methodology.

Domain Selection
(Architecture

+
Algorithm)

Domain-Specific
Modeling

Low-level
Simulation

Domain-Specific
Design Space

Exploration

Set of Designs
for a Kernel

Kernel RT-level Simulators
(XPower, ModelSim)

Design Trade-off
Analysis

I/O Multiplier
u

1

x
2

x
1 * / *

Q

Q
SET

CLR

S

R

Memory

Figure 1. Domain-speciÞc modeling and design methodology11

First, we select a domain. A domain corresponds to a family of architectures and algorithms that imple-
ments a given kernel. For matrix multiplication, several families of architectures are known. We choose two
architectures: a cache based uniprocessor and a linear array of processors. For each family of architectures,
several algorithms can be used to perform matrix multiplication.

Domain-speciÞc modeling facilitates development of a high-level model for a speciÞc domain. Detailed
knowledge of the domain is exploited to identify the architecture parameters for analyzing the energy dissipation
of the resulting designs in the domain. The high-level model consists of Relocatable Modules (RModule) and

Proc. SPIE Vol. 4867 99

Interconnect as the basic structural components. In addition, it contains several architecture parameters such
as operating frequency (f), precision (w), size of memory (s), power states (ps), etc. that are associated
with each component and a set of power functions, one for each power state of a component. Domain-speciÞc
details identify the range of values for each model parameter, thus reducing the design space. For example, the
maximum and minimum problem sizes inßuence several model parameters if a performance constraint such as
maximum tolerable latency has to be met. Additional details of the modeling can be found in Ref. 5.

The high-level model contains several functions such as power functions associated with each component
and performance functions for energy, latency, and area. These functions can be analyzed to understand the
trade-offs among different performance metrics (energy, latency, and area). These functions also capture the
sensitivity of performance metrics with respect to various architecture parameters.

During design space exploration (DSE), the domain-speciÞc design space is traversed to identify designs based
on some speciÞed selection criteria. For example, minimum energy dissipation with minimum area × latency
is a possible selection criteria. Our methodology does not propose a general DSE technique as the technique
depends on the domain. As our domain-speciÞc modeling technique constraints the design space speciÞc to the
domain, it typically does not result in a very large design space.

Low-level simulation is performed on the designs selected by the DSE step. The DSE uses various functions
to evaluate the designs. While the estimates are reasonably accurate,5 we use low-level simulation for two
different purposes. Our study shows that the error due to high-level estimation is typically in the range of
±10%. Therefore, low-level simulation is necessary to select a design if two candidate designs are within 10% of
each other with respect to a performance metric. The other use is to verify the performance estimates obtained
using the functions provided in the high-level model.

Low-level simulation for energy estimation of a design proceeds as follows. The design speciÞed in VHDL
is synthesized using Synopsys FPGA Express and Xilinx XST on the Xilinx ISE 4.1i design environment. The
place-and-route Þle (.ncd Þle) is obtained for the target FPGA device, Virtex-II XC2V1500. Mentor ModelSim
5.5e is used to simulate the module and generate simulation results (.vcd Þle). These two Þles are then provided
to the Xilinx XPower tool to estimate the energy dissipation. The switching activity for the input of the design
can be provided by the designer or speciÞed as some default values.

3. ENERGY-EFFICIENT DESIGNS FOR MATRIX MULTIPLICATION

Based on our design methodology, we develop energy-efficient designs for matrix multiplication using two do-
mains. Two architecture families, a uniprocessor architecture and a linear array architecture, are chosen. We
refer to "system-wide energy" as the total energy dissipated to perform matrix multiplication on FPGAs.

3.1. Uniprocessor Architecture
We deÞne a uniprocessor (PE) implementing the "usual" block matrix multiplication as the Þrst domain. This
domain uses a single multiplier and results in compact energy-efficient designs. There are two possible scenarios:
on-chip design and off-chip design. If the matrix multiplication kernel is a stand-alone application, all matrix
data are stored in an external memory outside the FPGA. We refer to such a design as off-chip design. If the
matrix multiplication kernel is one of many kernels in an application, it is desirable to have the matrix data
reside (in a Block SRAM) on the device. We refer to such a design as on-chip design. The Block SRAM is
a dedicated on-chip memory in Virtex-II and is usually used for storing intermediate data between (kernel)
computations. Figure 2 shows our target architectures.

In the off-chip design, the PE has one MAC (multiplier and accumulator), a cache (local buffer) of size c,
and I/O ports (See Figure 2 (a)). Each word of cache is three 8-bit registers. The data matrices are stored in
an external memory. For n×n matrix multiplication, the computational complexity of the algorithm is O(n3).
Block matrix multiplication (BMM) is performed with block size

√
c × √c. The I/O complexity (amount of

traffic between the PE and external memory) is O(n3/
√
c). It can be observed that a large cache decreases the

I/O traffic and as a result improves the energy dissipation in performing I/O.

Proc. SPIE Vol. 4867100

Cache MAC

PE
Memory
Bank A

Memory
Bank B

Memory
Bank C

FPGA

Cache MAC
I/O

PE

External
Memory

FPGA

(a) (b)

Figure 2. Uniprocessor architecture: (a) off-chip design and (b) on-chip design.

In the on-chip design, the PE has one MAC, a cache of size c, and three memory banks for storing three
matrices (See Figure 2 (b)). BMM is performed with block size

√
c × √c. The energy for I/O (outside the

device) is not included, but the energy dissipated in the three memory banks is considered. The read/write
access frequency of the memory banks depends on the traffic between the memory banks and the PE. It can be
observed that as the cache size increases, the number of memory bank accesses decreases and as a result the
energy dissipated in the memory banks reduces.

3.1.1. Identifying Components and Parameters

We identiÞed four components: MAC, cache, and the memory banks as RModules, the I/O as an Interconnect.
The RModules have w bit precision. We set w = 8, the same precision used in the Xilinx library.17 The cache
size (c) is the only parameter that can be varied at design time.

The component speciÞc power functions for MAC (M.p), cache (R.p), I/O (IO.p), and memory bank
(MEM.p) were obtained through low-level simulation. Sample VHDL code for each component was synthesized
and simulated in the Xilinx ISE4.1i environment. In the simulation, 1000 sets of 8 bit input data (waveforms)
were randomly generated. The data sets were fed to the ModelSim to obtain the simulation output (.vcd Þles)
based on the place-and-routed Þle of a component (.ncd Þle). The switching activity of the input sets to each
component was found to be on an average 25%. However, the switching activity in a circuit depends on the
behavior of a component (.ncd Þle). Also, by simulating design using the above data sets, we obtained the
average power dissipation. The power dissipation was measured using XPower.

For implementing the MAC in Virtex-II, there are two design choices: a CLB-based multiplier and a dedicated
multiplier. A dedicated multiplier is a stand-alone ASIC-based multiplier. A CLB-based multiplier is built
using CLBs and it was observed that it consumes more power than a dedicated multiplier. There are two
design choices for implementing the cache using CLBs. If the cache size is small, the cache can be realized
using CLBs conÞgured as register modules. Larger cache can be realized using CLBs conÞgured as SRAM.17

However, a SRAM-based cache can only be conÞgured to be a multiple of 16 bytes. We noticed that for c > 6,
the SRAM-based cache consumes less power than the register-based cache of the same size. M.p and IO.p
are constants. The power function for the register-based cache is: R.p(c) = 22.88 + 2.34c (mW). The power
function for the SRAM-based cache is: R.p(c) = 33.56 + 8.36 "c/16# (mW). The memory bank is implemented
using Block SRAM in Virtex-II. The power state of Block SRAM can be controlled by gated clocking. However,
there is not much difference (< 2%) in the power dissipation between the on and off states. Instead, the power
dissipated in Block SRAM depends mainly on the access frequency (fm) of the memory bank. A Block SRAM
can be conÞgured to be a multiple of 2 K bytes with 8 bit precision. The power function for 2 K byte Block
SRAM is: MEM.p(fm) = 0.28 + 102.92fm (mW).

3.1.2. System-wide Energy Function

We now consider the system-wide energy dissipated by the design. In both the on-chip and off-chip designs,
the amount of computation performed by the MACs is the same and the MACs dissipate the same amount

Proc. SPIE Vol. 4867 101

of energy. For the off-chip design, we do not consider the energy dissipated in the external memory. The
system-wide energy function (SE) for performing n× n matrix multiplication is:

SE(n, c) =
1

f
(n3 ×M.p+ 3n3 ×R.p(c) + 3(n3/√c)× IO.p)

Note that as c varies, we obtain a family of architectures each implementing matrix multiplication using
BMM with different block sizes. To compare with the Xilinx design, the operating frequency of our design was
set to 166 MHz. Figure 3 shows how different values of c affect the system-wide energy dissipation and the
energy distribution among the components of the design for 6 × 6 matrix multiplication. As c increases, the
energy for performing I/O decreases but the energy dissipated in the cache increases. Initially, the system-wide
energy decreases as c increases but for large values of c, the system-wide energy increases.

For the on-chip design, the energy dissipated in the memory banks is considered instead of the energy
dissipated in the I/O. The system-wide energy function is:

SE(n, c) =
1

f
(n3 ×M.p+ 3n3 ×R.p(c) + 3(n3/√c)×MEM.p)

(a) (b)

0

20

40

60

80

100

120

140

1 4 9 36

Cache size (c)

S
ys

te
m

-w
id

e
E

ne
rg

y
(n

J)

I/O
Cache
MAC

0

50

100

150

200

250

300

350

1 4 9 36

Cache size (c)

S
ys

te
m

-w
id

e
E

ne
rg

y
(n

J)

Memory Banks
Cache
MAC

Figure 3. System-wide energy dissipation and energy distribution for 6× 6 matrix multiplication as a function of cache
size: (a) off-chip design and (b) on-chip design.

Note that as c increases, the traffic between the memory banks and the PE decreases and as a result the
energy dissipated in the memory banks decreases.

3.1.3. Performance Analysis

As the system-wide energy function is a well-behaved function with easily determinable minima, we were able to
identify the most energy-efficient designs from the trade-off graphs (See Figure 3). We compared the performance
of our design with a design for 3× 3 matrix multiplication provided by Xilinx.17 Since Xilinx library does not
provide on-chip design, we added Block SRAMs to the Xilinx design. All the designs execute at 166 MHz. For
n > 3, we used block matrix multiplication using the 3× 3 design.
To measure the system-wide energy for the design based on the Xilinx library, we used the same 1000 input

data sets (waveforms) which were used to obtain the component speciÞc power functions in Section 3.1.1. Thus,
the switching activity of the input set are the same for both designs. Notice, however, the switching activity in
the circuit can be different from the activity in our designs. We compared our design with the design based on
the Xilinx library. Table 1 shows the energy, latency, and area of the designs for n = 6. For the off-chip design,
the cache size c = 4 gives the minimum system-wide energy while for the on-chip design, the optimal cache size
was found to be 9. All designs use a single dedicated multiplier. The on-chip designs use three memory banks.
The multiplier and memory banks are not included in the total area. The improvement in energy dissipation
and latency of our design compared with the Xilinx design are also shown.

Proc. SPIE Vol. 4867102

Table 1. Comparison of on-chip designs

Design based Design based on Performance
Size on Xilinx Library Uniprocessor Improvement

T A E T A Cache E E T
cycles slices nJ cycles slices size nJ % %

6x6 360 179 330.7 320 158 9 157.9 52 13

3.2. Linear Array Architecture
For the second domain, we consider a linear array of processing elements (PEs) as the candidate architecture
(See Figure 4 (a)). Each PE has one multiplier and storage. We start with an algorithm for optimal latency
on linear array.13 PEj in Figure 4 (a) computes cij =

!n
k=1 aik × bkj for all i, 1 ≤ i ≤ n where aik, bkj , and

cij represent an element of n× n matrices A, B, and C. In iteration (i, k), 1 ≤ i, k ≤ n, cij = cij + aik × bkj
is computed in PEj . Elements of matrix A and B are fed to the array via two input ports of PE1 in column
major and row major order, respectively. It is critical to ensure that aik "meets" bkj in a cycle in PEj . For
this, aik and bkj pass through two and one delay(s), respectively in each PE. The resulting architecture for each
PE is shown in Figure 4 (b). aik enters input port AS and goes through two delays (AS.LR and AS.RR), while
bkj enters BS and goes through one delay. Details of the algorithm, its analysis, and proof of correctness can
be found in Ref. 13.

Compared with the uniprocessor design in Section 3.1, we use more multipliers to reduce the latency.
The above family of architectures offers several advantages compared to other architecture families. These
architectures have a low I/O-bandwidth requirement and they scale as the problem size grows. An optimal
family of algorithms for these architectures is known.13 Each PE in the linear array has storage of size s,
1 ≤ s ≤ n. The number of PEs (pe) is chosen such that n ≤ pe ≤ n2. To achieve the minimal I/O complexity
(O(n2)), the total amount of storage across all the PEs should be n2. As shown in Ref. 13, this architecture can
perform n× n matrix multiplication in O(n2) time using n"n/s# PEs. For the sake of illustration, we consider
the on-chip design for this domain.

AS.LR

BS.LR

BS[1] BS[s]

BF.T

AS.RR

BF.R

BS.RR

C[1] . . . C[s]

MAC

AS

OC

BF

BS

PE1 PE2 PEpe

Memory
Bank A

Memory
Bank B

Memory
Bank C

FPGA

(a) (b)

Figure 4. (a) Linear array architecture and (b) details of the PE

3.2.1. Identifying Components and Parameters

The structure of the linear array is shown in Figure 4 (a). It consists of three components: processing elements
(PEs), buses connecting adjacent PEs, and memory banks. For the purpose of high-level modeling, we identiÞed
the PE and the memory bank as RModules, and the bus between two adjacent PEs as an Interconnect. The PE
has a MAC of precision w and storage of size s (See Figure 4 (b)). The MAC is implemented using a dedicated

Proc. SPIE Vol. 4867 103

multiplier. The PE has two power states on and off . In the on state, the multiplier is on and thus the PE
dissipates more power than in the off state when the multiplier is off. The power state of the multiplier is
controlled by clock gating. The PE also includes 6 registers and 3 multiplexers of w bits. The key parameters
affecting energy are the number of PEs (pe), the amount of storage within a PE (s), and power states (ps).

We implemented the PE using a Virtex-II FPGA operating at f = 166 MHz and performed simulations to
obtain the power functions for the PE and the bus. The power function for the PE is:

PE.p.ps =

"
7.01s+ 31.04 mW (ps = on)
7.01s+ 14.04 mW (ps = off)

(1)

The bus has constant amount of power dissipation of 39.74 mW. The power function for the memory bank is
the same as in the uniprocessor architecture (See Section 3.1.1).

3.2.2. System-wide Energy Function

There are several constraints imposed by the algorithm which is exploited to identify component speciÞc pa-
rameters and their ranges. The value of s determines the total number of PEs (pe). The latency (T) of this
design using n "n/s# PEs and s storage per PE is13: T = (n2 + 2n "n/s# − "n/s#+ 1).
We consider problems in the range 1 ≤ n ≤ 16. Precision (w) is set to 8. In each PE, the multiplier is on

for T / ("n/s#) cycles and is off for T × (1− 1/ "n/s#) cycles.13 PE.p.ps refers to the power dissipation of PE
when its multiplier is in state ps (See Equation 1). Note that the I/O traffic between the PEs and the memory
banks is O(n2). The system-wide energy function is:

SE(n, s) =
1

f
(n× T × PE.p.ps=on + T × (n "n/s# − n)× PE.p.ps=off + 3n2 ×MEM.p)

3.2.3. Design Trade-offs and Performance Analysis

Figure 5 (a) shows the effect of varying the amount of storage (s) on the power dissipation of a PE. Figure
5 (b) shows the effect of varying the amount of storage (s) on the system-wide energy for three problem sizes
(n = 4, 8, 16). Based on these plots, to obtain energy-efficient designs we choose pe = s = n, where n is the
problem size.

(a) (b)

0

40

80

120

160

1 2 4 8 12 16

Amount of Storage (s)

P
ow

er
D

is
si

pa
tio

n
pe

r
P

E
(m

W
)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 4 8 12 16

Amount of Storage (s)

S
ys

te
m

-w
id

e
E

ne
rg

y
(n

J)

n=16
n=8
n=4

Figure 5. (a) Power dissipation for a single PE and (b) the system-wide energy as a function of the amount of storage
(s) for n = 4, 8, 16.

Table 2 shows the energy, latency, and area of the designs for various problem sizes. The improvement in
energy dissipation and latency in our designs compared with the Xilinx designs are also shown. On the average
our designs consume 32% less energy compared with the Xilinx design. The latency improvement varies from
7× to 22×. However, our designs occupy more area.

Proc. SPIE Vol. 4867104

Table 2. Comparison of our designs on linear array architecture with Xilinx design

Design based Design based on Performance
Size on Xilinx Library Linear Array Architecture Improvement

T A E T A E E T
n× n cycles slices nJ cycles slices nJ % times
6x6 360 179 330.7 49 1074 213.2 36 7.3
9x9 1215 179 1116.0 100 1935 715.5 36 12.2
15x15 5625 179 5166.8 256 4305 3812.5 26 22.0

The energy dissipation of the designs discussed in this section is based on high-level estimation using the
system-wide energy function for the domain. In order to validate these energy estimations, we performed
the following experiment. For a particular design, we used the corresponding system-wide energy function
to estimate the total energy dissipation. We compared this result with a complete VHDL simulation of the
design using Xilinx tools. In the simulations, the same input data used to obtain the component speciÞc power
functions were used. As noted earlier, the average switching activity was observed to be 25%. We performed this
experiment for various problem sizes using designs in Section 3.2.2. Table 3 shows the accuracy of our estimates.
Our energy estimations were (on the average) within 7.0% of the estimations using low-level simulation tools.

Table 3. Accuracy of the high-level energy estimation of our designs

Problem size n 3 6 8 9 12 16

Energy Estimated 34.0 213.2 497.8 715.5 1801.2 4759.7
(nJ) Measured 37.4 228.6 536.9 768.4 1913.6 5078.6

Error 9.0% 6.7% 7.3% 6.9% 5.9% 6.3%

4. CONCLUSIONS

This paper developed several energy-efficient designs for matrix multiplication. The energy models speciÞc to
the domains were deÞned by our algorithms, architectures, and speciÞcation of target FPGA devices. In the
models, key architecture parameters such as caches size and amount of storage per PE that affect the system-
wide energy were identiÞed. Then the system-wide energy functions were obtained using these parameters.
Trade-off analysis using the system-wide energy functions facilitated development of energy-efficient designs.
To realize compact designs, we developed the uniprocessor design in which the cache size affects the system-wide
energy. To reduce the latency, we developed designs based on the linear array architecture in which the amount
of storage per PE affects the system-wide energy. Our results demonstrate superior energy performance.

Currently, we are automating several design steps by using the MILAN framework.9 MILAN is a model
based hierarchical simulation framework for domain-speciÞc system design. MILAN can be conÞgured for a
speciÞc domain to provide a modeling language suitable for the domain. It also facilitates integration of several
tools and simulators into the framework. MILAN is used to automate several steps in our design methodology
to realize a semi-automatic design environment for energy-efficient designs using FPGAs. Additional details of
the MILAN framework can be found in Ref. 1, 10.

ACKNOWLEDGMENTS

The work described in this paper is part of the Model based Integrated SimuLAtioN (MILAN) project.9 MILAN
is a joint project between the University of Southern California and Vanderbilt University. It is supported by
the US DARPA Power Aware Computing and Communication (PAC/C) program under contract F33615-C-
00-1633 monitored by Wright Patterson Air Force Base. Ju-wook Jang�s work is supported by the Ministry

Proc. SPIE Vol. 4867 105

of Information and Communication, Korea. We would like to thank the MILAN team, particularly, Sumit
Mohanty for many helpful discussions.

REFERENCES
1. A. Agrawal, A. Bakshi, J. Davis, B. Eames, A. Ledeczi, S. Mohanty, V. Mathur, S. Neema, G. Nordstrom,
V. Prasanna, C. Raghavendra, and M. Singh, "MILAN: A Model Based Integrated Simulation for Design
of Embedded Systems," Language Compilers and Tools for Embedded Systems, 2001.

2. A. Amira, A. Bouridane, and P. Milligan, "Accelerating Matrix Product on ReconÞgurable Hardware for
Signal Processing," Field-Programmable Logic and Applications (FPL), Springer Lecture Notes in Computer
Science 2147, pp. 101-111, 2001.

3. A. Bogliolo, L. Benini, and G. Micheli, "Regression-based RTL Power Modeling," ACM Transactions on
Design Automation of Electronic Systems, Vol. 5, No. 3, 2000.

4. B. L. Bowerman and R. T. O�Connell, Linear Statistical Models - An Applied Approach, 2nd Edition,
Brooks/Cole Pub Co.

5. S. Choi, J. Jang, S. Mohanty, and V. K. Prasanna, "Domain-SpeciÞc Modeling for Rapid System-Wide
Energy Estimation of ReconÞgurable Architectures," to appear in International Conference on Engineering
of ReconÞgurable Systems and Algorithms (ERSA), June 2002.

6. H. ElGindy and Y.-L. Shue, "On Sparse Matrix-Vector Multiplication with FPGA-based Systems," IEEE
Symposium on Field Programmable Custom Computing Machines (FCCM), April 2002.

7. J.-W. Hong and H. T. Kung, "I/O Complexity: The Red-Blue Pebbling Game," ACM Symposium on
Theory of Computing (STOC), 1981.

8. J. Jang, S. Choi, and V. K. Prasanna, "Energy-Efficient Matrix Multiplication on FPGAs," submitted to
International Conference on Field Programmable Logic and Applications (FPL), 2002.

9. Model-based Integrated Simulation, http://milan.usc.edu.
10. S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, "Rapid Design Space Exploration of Heterogeneous

Embedded Systems using Symbolic Search and Multi-Granular Simulation," Language Compilers and Tools
for Embedded Systems, 2002.

11. S. Mohanty, S. Choi, J. Jang, and V. K. Prasanna, "A Model-based Methodology for Application Spe-
ciÞc Energy Efficient Data path Design using FPGAs," to appear in IEEE International Conference on
Application-speciÞc Systems, Architectures and Processors (ASAP), 2002.

12. T. Mudge, "Power: A First-Class Architectural Design Constraint," IEEE Computer, Volume. 34, April
2001.

13. V. K. Prasanna Kumar and Y. Tsai, "On Synthesizing Optimal Family of Linear Systolic Arrays for Matrix
Multiplication," IEEE Transactions on Computers, Vol. 40, No. 6, 1991.

14. A. Ragunathan, N. K. Jha, and S. Dey, High-level Power Analysis and Optimization, Kluwer Academic
Publishers, 1998.

15. L. Shang and N. K. Jha, "High-Level Power Modeling of CPLDs and FPGAs," International Conference
on Computer Design, 2001.

16. A. Stammermann, L. Kruse, W. Nebel, and A. Prastsch, "System Level Optimization and Design Space
Exploration for Low Power," International Symposium on System Synthesis (ISSS), 2001.

17. Xilinx Application Note: Virtex-II Series and Xilinx ISE 4.1i Design Environment, http://www.xilinx.com.

Proc. SPIE Vol. 4867106

	SPIE Proceedings
	MAIN MENU
	Conferences
	Search
	Close

