
ENERGY-EFFICIENT AND PARAMETERIZED DESIGNS FOR
FAST FOURIER TRANSFORM ON FPGAS∗

Seonil Choi1, Gokul Govindu1†, Ju-Wook Jang2‡, Viktor K. Prasanna1

1Electrical Engineering-Systems 2Electronic Engineering
University of Southern California Sogang University
Los Angeles, CA 90089 Seoul, Korea

{seonilch+govindu+prasanna}@usc.edu jjang@sogang.ac.kr

ABSTRACT

In this paper, we develop energy efficient designs for the Fast
Fourier Transform (FFT) on FPGAs. Architectures for FFT on
FPGAs are designed by investigating and applying techniques for
minimizing the energy dissipation. Architectural parameters such
as degrees of vertical and horizontal parallelism are identified and
a design domain is created through a combination of design choices.
We determine design trade-offs using high-level performance esti-
mation to obtain energy-efficient designs. We implemented a set
of parametrized designs having parallelism, radix and choice of
storage types as parameters, on Xilinx Virtex-II FPGA to verify
the estimates. Our designs dissipate 57% to 78% less energy than
the optimized designs from the Xilinx library. In terms of a com-
prehensive metric such as EAT (Energy-Area-Time), our designs
offer performance improvements of 3-13x over the Xilinx designs.

1. INTRODUCTION
Characteristic features like customizability and high processing
power and DSP oriented features like embedded multipliers and
RAMs have made FPGAs an attractive option for implementing
signal processing applications. Traditionally the performance met-
rics for signal processing have been latency and throughput. How-
ever energy efficiency has become increasingly important with the
proliferation of portable, mobile devices. One such energy con-
scious application is software-defined radio (SDR) [4]. A FPGA-
based system is a very viable solution for SDR’s requirement of
adaptivity and high computational power.

In this paper, we present energy-efficient FFT designs on FP-
GAs. The FFT is the compute-intensive portion of broadband
beamforming applications such as those generally used in SDR
and sensor networks. We investigate design techniques for mini-
mizing the energy dissipated by FPGAs and apply the techniques
for designing architectures and algorithms for FFT. We identify
the architectural parameters that characterize the FFT designs and
which affect the energy dissipation of the designs. A high level en-
ergy performance model is developed using these parameters. This
model is used to determine design trade-offs, estimate the energy
efficiency and arrive at energy-efficient designs. A parametrized

∗This work is supported by the DARPA Power Aware Computing and
Communication Program under contract F33615-C-00-1633 monitored by
Wright Patterson Air Force Base and in part by the National Science Foun-
dation under award No. 99000613.

†Gokul Govindu’s work is supported by Satyam Computer Services.
‡Ju-wook Jang’s work is supported by LG Yonam Foundation.

architecture is designed, so that by selecting appropriate parameter
values, the architecture of a complete design can be easily synthe-
sized. Our parameterized design has more flexibility than a soft IP
core, because it exploits the degrees of parallelism and through-
put to a greater extent. We implemented and simulated a set of
designs on Xilinx Virtex-II FPGA using Xilinx ISE tools to ob-
tain energy dissipation values. We also compare the latencies, the
area, and energy dissipations of our designs with the Xilinx library
based designs. We use both estimated values (based on the model)
and actual values (based on the implemented designs) in our com-
parisons. These comparisons show that our designs can provide
significant reductions in not only latency but also energy dissipa-
tion. We thus provide a parametrized architecture and high-level
model for fast estimation and implementation of energy efficient
FFT designs.

The remainder of this paper is organized as follows. Sec-
tion 2.1 presents design techniques for minimizing the energy dis-
sipation in FPGAs. Our parameterized FFT architectures are pre-
sented in Section 2.2. Section 3 shows our performance estima-
tion and the implementations of the selected designs on FPGAs.
We also compare our designs with Xilinx library based designs.
Finally, Section 4 concludes the paper.

2. ENERGY-EFFICIENT DESIGN FOR FAST FOURIER
TRANSFORM

In this section, we briefly discuss techniques that can be applied to
FPGA-based designs to obtain energy efficiency. Then we present
our energy-efficient, parametrized architectures for FFT on FP-
GAs, inculcating the aforementioned design techniques.

2.1. Energy-Efficient Design Techniques
In literature, there are many low-level power management tech-
niques that lead to energy savings when applied to FPGA design
[7, 9]. One such technique is clock gating, which is used to disable
parts of the device that are not in use during the computation. In
the Xilinx Virtex-II family of FPGAs, clock gating can be realized
by using primitives such as BUFGCE for dynamically driving a
clock tree only when the corresponding logic is used. For exam-
ple, FFT computation has many complex number multipliers to
perform twiddle factor computations (multiplication followed by
addition/subtraction). Because of the nature of the FFT algorithm,
more than a quarter of the twiddle factors are 1, −1, j, or −j and
their computation can be bypassed. Thus, the implementation of
twiddle factor computation can exploit clock gating to disable the

unnecessary computation blocks. Choosing energy-efficient bind-
ings is another technique. A binding is a mapping of a compu-
tation to an FPGA component. The ability to choose the proper
binding is due to the existence of several configurations for the
same computation. For example, since FFT has a high data stor-
age requirement, different bindings of the storage elements affect
energy dissipation significantly. There are three possible bindings
for storage elements in Virtex-II devices based on the number of
entries: registers, slice based RAM (SRAM), and embedded Block
RAM (BRAM). For large storage elements (those with more than
48 entries) BRAM shows an advantage in power dissipation over
other implementations. A designer can analyze the trade-offs that
arise from various bindings based on the design requirements. A
pipelined architecture might be chosen since many digital signal
processing applications process a stream of data. For these ap-
plications with regular data flow, pipelining increases throughput.
But pipelining might increase power dissipation since all logic in
the design is continuously active. Since throughput is maximized,
eventually, the energy dissipation is reduced. Moreover since inter-
connect accounts for considerable power dissipation, the degree of
parallelism and the depth of pipelining which might increase inter-
connect and thus energy dissipation, have to analyzed before im-
plementation. Another technique is algorithm selection. A given
application can be mapped onto FPGAs differently by selecting
different algorithms. For example in implementing the FFT, the
choice of a radix-4 based algorithm significantly reduces the num-
ber of complex multiplications that would otherwise be needed
if a radix-2 based algorithm were used. Thus the trade-offs be-
tween different algorithms and architectures should be analyzed to
achieve energy-efficient designs. More techniques are discussed in
[2].

2.2. Designs for Fast Fourier Transform
For FFT designs, we use the well known Cooley-Tukey method.
The calculation of an N -point FFT requires O(N) operations for
each of its log2(N) stages, so the total computation required is
O(N log2N) [6].

Due to the fact that, in practice, FFTs often process a stream of
data, a pipelined architecture has been chosen. The N -point FFT
design is based on the radix-4 algorithm. While there are many
design parameters, we identify the parameters that determine the
FFT architecture and eventually affect the energy dissipation. The
parameterization is the key of our design since we explore design
space based on the parameters for energy efficiency. There are
five design parameters that characterize an N-point FFT designs:
1) the problem size (N), 2) the degree of horizontal parallelism
(Hp), 3) the degree of vertical parallelism (Vp), 4) the binding for
storage element, and 5) the precision of data. The horizontal par-
allelism determines how many radix-4 stages are used in parallel
(1 ≤ Hp ≤ log4N). Vertical parallelism determines the num-
ber of inputs being computed in parallel. Using the radix-4 algo-
rithm, up to 4 inputs can be operated on in parallel. We have con-
sidered five basic building blocks described in [2]: radix-4, data
buffer, data path permutation, parallel-to-serial/serial-to-parallel
mux, and twiddle factor computation. Each individual block is
parametrized, so that a complete design for anyN can be obtained
from combinations of the basic blocks:

Radix-4 butterfly (R4): This block performs a set of addi-
tions and subtractions with 16 adders/subtracters. It takes four in-
puts and produces four outputs in parallel. Each input data has
real and imaginary components. The complex number multiplica-

tion for 1, −1, j, or −j is implemented by remapping the inputs
data path and using adders / subtracters.

Twiddle factor computation (TW): This block performs the
complex number multiplication of the data with twiddle factors.
The twiddle factors are obtained from a sine/cosine lookup ta-
ble. Bypassing the multiplication when the value of twiddle fac-
tors is 1, −1, j, or −j can reduce computation and thus energy
(by disabling the multipliers). This block contains 4 multipliers, 2
adders/subtracters and two sign inverters.

Data buffer (DB): This block consists of two RAMs having
N/Vp entries each. Data is written into one and read from the other
RAM simultaneously. The read and write operations are switched
after every N inputs. The data write and read addresses are at
different strides determined by the architecture. For example in
a N = 16, single input case, writing is done sequentially and
reading is at strides of four.

Data path permutation (PER): In the parallel architectures
(Vp = 4) , after computation of each stage, the data paths need
to be permuted so that data can be accessed in parallel and in the
correct order by the next stage. Dependencies occur due to stride
accesses requiring data from either same locations or same RAMs.
Figure 1 shows the permutation of the first stage for the 16-point
FFT. On the first clock cycle, four data are stored in the first entry
of each DB in parallel (See Figure 1 (a)). On the second clock
cycle, another four data are stored in the second entry of each DB
with one location being permuted (See Figure 1 (b)). On the third
and fourth clock cycles, the operation is performed in the same
manner and the final result is shown in Figure 1 (c). Note that
the four data, a0, a4, a8, and a12, are stored in different DBs so
that the radix-4 computation can be performed in parallel. The
permutation occurs at every stage in the same manner.

a0

a1

a2

a3

a0 a7

a1 a4

a2 a5

a3 a6

a10 a13

a11 a14

a8 a15

a9 a12

a0 a7

a1 a4

a2 a5

a3 a6

(a) (b) (c)

DB0

DB1

DB2

DB3

Me mo ry e n try
0 1 2 3

Me mo ry e n try
0 1 2 3

Me mo ry en try
0 1 2 3

Fig. 1. Data permutation for DB at the first stage for 16-point FFT
(clock cycle (a) t = i (b) t = i+ 1, and (c) t = i+ 3)

Parallel-to-serial/serial-to-parallel mux (PS/SP): This block
is used when the data is fed into the Radix-4 block in parallel and
fed out in serial in the serial architecture (Vp < 4). While the
radix-4 module operates on four data in parallel, the rest of archi-
tecture is flexible. Thus, to match the data rate, a parallel-to-serial
mux before the radix-4 module and a serial-to-parallel mux after
the radix-4 module are required.

For example, a 16-point FFT algorithm has 2 radix-4 stages. In
the design, we can use one or two radix-4 blocks (Hp = 1, 2) de-
pending on the sharing of the radix-4 block resource. If Hp = 1,
one radix-4 block is used and is shared by the first and second
stages. Thus a feedback datapath is necessary which decreases
the throughput of the design. Figure 2 (a) shows an architecture
for N = 16 where Vp = 1, Hp = 2. Figure 2 (b) shows a
fully parallel architecture when Vp = 4, Hp = 2. This design
has 12 data buffers, two radix-4 blocks, and 3 twiddle computa-
tion blocks. We also develop the associated algorithm for various
architectures. Figure 3 describes the parallel algorithm for the ar-
chitecture in Figure 2 (b). The variable P is used for horizontal

(a)

(b)

DB 0

DB 1

DB 2

DB 3

a 0[i+1]

a 0[i+2]

a 0[i+3]

a0 [i]

a2 [i+2]

a
2
[i]

a 2[i+1]

a2 [i+3]

P
E
R

TW3

TW1

TW2

R4
P
E
R

DB0

DB1

DB2

DB3

P
E
R

R4
P
E
R

DB0

DB1

DB2

DB3

P
E
R

P
E
R

DB R4 TW DB R4 DBa 0[i] a 2[i]

Fig. 2. Architectures for 16-point FFT (a) (Hp, Vp) = (2, 1) and
(b) (Hp, Vp) = (2, 4)

parallelism (Hp = log4N = 2) and there are four unrolled do
parallel loops (Vp = 4). Quad, Dist, P, L, and R are used for
indexing data buffer in parallel.

Fig. 3. Algorithm used for the architecture in Figure 2 (b)

3. PERFORMANCE ESTIMATION AND DESIGN
SYNTHESIS

Since the architecture is parameterized, we can generated all pos-
sible designs by varying the parameter values. However, rather
than implementing and simulating all designs, we define the high-
level model using the techniques in [1] and conduct performance
estimation and design trade-offs. Then the chosen candidate de-
signs are implemented. Our target device is Virtex-II FPGA (speed
grade -5) which is a high-performance, platform FPGA from Xil-
inx [8]. We have chosen the XC2V1500 for small FFT designs
(N ≤ 64) and XC2V3000 for large FFT designs (N > 64). These
devices have 48 and 96 18× 18-bit embedded multipliers, respec-
tively.

3.1. Energy Performance Estimation
In FPGA designs with streams of data, throughput is an impor-
tant factor in energy dissipation. Thus, in our pipelined design, the
energy equation is E = P/Th, where P is the average power
dissipation and Th is the throughput of the design. Note that
1/Th = L can be considered the effective latency of the de-
sign. The effective latency accounts for the benefits of overlap-
ping computations in pipelining. Based on the architecture and
algorithm in Section 2.2, it can be shown that the equation to cal-
culate the latency (L), of computing an N -point, radix-4 FFT is:

L = N log4N/(Vp ×Hp), where L is in cycles. To convert this
latency to seconds, we merely divide by the clock frequency. We
also know the types of FPGA components (multipliers, registers,
etc.) and the amounts of each type of component that are used by
for five basic building block. We obtain the power function for
each basic building block using the techniques in [1]. We sum
the average power dissipation of each blocks to estimate the total
power dissipation. Since power is energy divided by latency, and
we have earlier calculated latency, we can multiply the power by
the latency to estimate the energy used in executing the algorithm.
The power functions for the data buffer, the radix-4 block, the data
path permutation, parallel-to-serial/serial-to-parallel mux, and the
twiddle computation block are PDB , PR4, PPER, PPS/SP and
PTW , respectively, where PDB = 1.23N + 35.44 (mW) using
SRAM, PDB = 0.0156N + 79.65 (mW) using BRAM, PR4 =
142.84 (mW), PPER = 54.09 (mW), PPS/SP = 13.52 (mW),
PTW = 0.0054N + 183.57 (mW) using Block SRAM, PTW =
0.4879N + 157.74 (mW) using SRAM, and PIO = 44 (mW).
Thus, the energy can be estimated as

E = L · {Vp(Hp + 1)PDB + 2mHpPPER + (Hp − 1)PR4

+2s(Hp− 1)PPS/SP + tvthPTW + 2VpPIO} (1)

m is the number of the data path permultation block (m = 1
when Vp = 4, otherwise m = 0), s is the number of parallel-
to-serial/serial-to-parallel muxes (s = 1 when Hp = 1, other-
wise s = 0). tvth is the number of twiddle computation blocks
(tv = Vp−1when Vp = 4, otherwise tv = Vp; th = Hp−1when
Hp = log4N , otherwise th = Hp).

We apply the parameter values to Equation 1 to compare the
energy dissipations of various problem sizes. The clock speed
of FPGA-based designs varies based on the likely speed achiev-
able after place and route results. Figure 4 shows the energy and
area estimates for various design points when computing a 256-
point FFT. It clearly shows that the BRAM designs are better than
the SRAM based in both metrics. The BRAM based designs use
BRAMs for data buffer and phase lookup table since they are more
energy-efficient forN > 64. The precision of each data is 16 bits.
We assume a clock frequency of 100MHz since the implemented
designs are run at a clock frequency of 100Mhz. We choose the
minimal energy dissipation by selecting different parameter val-
ues (Hp = 4 and Vp = log4N , BRAM based). It shows that
parallelism increases the energy efficiency of the FFT design de-
spite increasing the area requirement.

0

2000

4000

6000

8000

10000

(1,1) (1,2) (1,4) (4,1) (4,2) (4,4)

Design point (Vp, Hp)

E
ne

rg
y/

N
-p

oi
nt

 (n
J)

0

2000

4000

6000

8000

10000

12000

A
re

a
(s

lic
es

)

Energy (SRAM)

Energy (BRAM)
Area (SRAM)

Area (BRAM)

Fig. 4. Energy and area estimates for various designs forN = 256

Table 1. Performance comparion with Xilinx library based designs.
Problem Xilinx (100MHz) Our designs (100MHz) Area Time E EAT

size(n) A(slice) T(usec) Em(nJ) EAT E/AT Vp Hp Binding A(slice) T(usec) Eest(nJ) Em((nJ) Error EAT E/AT (inc.) (dec.) (dec.) (dec.)

16 1362 0.16 179.68 0.04 0.83 1 2 SRAM 1171 0.16 65.40 76.99 15% 0.014 0.41 0.86x 1.0x 57% 2.71x

4 2 SRAM 2390 0.04 63.55 75.18 15% 0.007 0.79 1.75x 4.0x 58% 5.45x

64 1079 1.92 1785.60 3.70 0.87 1 3 SRAM 2266 0.64 552.39 493.32 12% 0.72 0.79 2.10x 3.0x 72% 5.17x

1 3 BRAM 1613 0.64 464.24 390.40 19% 0.40 0.38 1.49x 3.0x 78% 9.18x

4 3 SRAM 5690 0.16 393.86 418.68 6% 0.38 0.46 5.27x 12.0x 77% 9.70x

4 3 BRAM 4193 0.16 403.17 400.41 1% 0.27 0.60 3.89x 12.0x 78% 13.77x

256 1303 7.68 6927.36 69.32 0.69 1 4 BRAM 2050 2.56 2582.17 2223.1 16% 11.67 0.42 1.57x 3.0x 68% 5.94x

4 4 BRAM 5624 0.64 2203.22 1971.3 12% 7.10 0.55 4.32x 12.0x 72% 9.77x

1024 1557 30.72 34283.5 1639.8 0.72 1 5 BRAM 2744 10.24 14963.5 13739.4 9% 386.06 0.50 1.76x 3.0x 60% 4.25x

4 5 BRAM 6673 2.56 11424.7 9204.2 20% 157.23 0.54 4.29x 12.0x 73% 10.43

Eest is the estimated energy. Em is the measured energy from the synthesized designs. The unit of EAT is 1E-9. Inc. stands for increment. Dec. stands for decrement.

3.2. Performance of Synthesized Designs
All designs are parameterized based on N , Hp, V p, binding, and
precision as described in Section 2.2 and are implemented after
coding in VHDL. Based on the performance estimation, we iden-
tified several designs for various problem sizes. We fixed the pre-
cision as 16 bits. These designs were synthesized using XST (Xil-
inx Synthesis Technology) in Xilinx ISE 4.1i [8]. The place-and-
route file (.ncd file) was obtained for Virtex-II XC2V1500 and
XC2V3000. The input test vectors for the simulation are ran-
domly generated and the average switching activity is 50%. Men-
tor Graphics ModelSim 5.5e was used to simulate the designs and
generate simulation results (.vcd file). These two files are then
provided to the Xilinx XPower tool to evaluate the average power
dissipation. The energy dissipation values are obtained by mul-
tiplying the average power by the latency. We observed that the
error of energy estimation (see Table 1) is below 20% for the en-
ergy dissipation. The source of error mostly is due to the control
logic since the estimation does not include it. If the estimates of
designs are within 20% error range, the synthesized and simulated
values need to be compared. Note BRAM is chosen for architec-
tures forN > 64 since BRAM can store large data relatively using
less energy than SRAM.

We also use FFT designs from the Xilinx library to compare
with our designs. From the results in Table 1, our designs dis-
sipates 57% to 78% less energy for various problem sizes. It is
clear that our designs can perform the computations both faster
and more energy-efficiently than the Xilinx based designs. If we
use a comprehensive metric, EAT (Energy-Area-Time) and energy
/ (area × latency) (E/AT), our designs offer a performance im-
provement of 3-13x and 10-56%, respectively, compared to the
Xilinx designs. Note that the E/AT metric is the average power
density of the design.

Energy efficiency is achieved using pipelining, appropriate dis-
abling of the compute blocks and choosing efficient memory bind-
ings. Pipelining increases the throughput and decreases the effec-
tive latency. Disabling twiddle factor computation blocks reduces
the amount of energy dissipated by more than 30%. Also, selecting
a radix-4 algorithm as the basic building block reduces the num-
ber of complex multiplications in the design. Choosing bindings
such that the data buffers and sine/cosine lookup tables are imple-
mented using SRAM forN < 64 or BRAM forN ≥ 64 increases
the energy efficiency. We also observed that while parallelism in-
creases the throughput and eventually the energy efficiency, the
energy used by the interconnect in FPGAs significantly increases.

For example, the design of (Vp, Hp) = (4, 1) dissipates 20%more
energy than the design of (Vp, Hp) = (1, 4) for N = 256 while
the former has 2 times higher throughput. It is because the former
uses more interconnects and memory elements.

4. CONCLUSION
To develop energy-efficient designs for FFT, we discussed energy-
efficient design techniques and a parametrized FFT architecture.
Performance estimation and design trade-offs were performed to
identify energy-efficient designs. We observed that the intercon-
nects dissipate significant amount of energy in a parallel architec-
ture. We are working on modeling interconnect energy for perfor-
mance estimation and understanding design trade-offs.

5. REFERENCES

[1] S. Choi, J.-W. Jang, S. Mohanty, and V. K. Prasanna,
"Domain-Specific Modeling for Rapid System-Wide Energy
Estimation of Reconfigurable Architectures," Engineering of
Reconfigurable Systems and Algorithms, 2002.

[2] S. Choi, Ronald Scrofano, V. K. Prasanna, and J.-W. Jang,
"Energy Efficient Signal processing using FPGAs" to appear
in ACM Field Programmable Gate Array, 2003.

[3] S. Choi, "Domain Specific Modeling and Energy Efficient
Designs for Signal Processing Kernels using FPGAs," Doc-
toral Dissertation, in preparation, 2003.

[4] C. Dick, "The Platform FPGA: Enabling the Software Ra-
dio", Software Defined Radio Technical Conference and
Product Exposition November 2002.

[5] P. Master and P. M. Athanas, "Reconfigurable Computing
Offers Options For 3G,"Wireless Systems Design, pp. 20-23,
1999.

[6] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing, Prentice Hall, 1989.

[7] L. Shang, A. Kaviani, and K. Bathala, "Dynamic Power Con-
sumption in Virtex-II FPGA Family," International Sympo-
sium on Field Programmable Gate Arrays, 2002.

[8] Xilinx Application Note, Virtex-II Series and Xilinx ISE 4.1i
Design Environment, http://www.xilinx.com, 2001.

[9] G. Yeap, Practical Low Power Digital VLSI Design, Kluwer
Academic Publishers, 1998.

