
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 67 (2003) 1–25

A simple reduction of non-uniformity in dynamic load
balancing of quantized loads on hypercube multiprocessors

and hiding balancing overheads$

Hwakyung Rim,a,� Ju-wook Jang,b and Sungchun Kimc

aDepartment of Computer Education, Busan National University of Education, Busan, South Korea
bDepartment of Electronic Engineering, Sogang University, Seoul, South Korea
cDepartment of Computer Engineering, Sogang University, Seoul, South Korea

Received 27 October 2000; revised 23 May 2002

Abstract

We reconsider the dimension exchange method (DEM), a known dynamic load balancing scheme on
hypercube multiprocessors, for its inefficiency when the load is not divisible in arbitrary sizes but divisible
only in a fixed size. We show that a direct application of the DEM to this kind of load may result in
nonuniformity (the maximum difference in assigned units of load among the processors after balancing) as
large as log N for a hypercube of size N: Since the processing time after the balancing depends on the
processor with the maximum number of units, it is desirable to reduce the nonuniformity as small as
possible. In this paper, we propose a new simple method, odd even method (OEM), which reduces the

nonuniformity to no more than J1
2
log Nn: The claim is proved and confirmed by enumerating all possible

combinations of load for hypercubes of limited sizes using a computer. To estimate the accumulated effect
of our balancing method under real-world parallel processing environment, a simulation for hypercube
multiprocessors using SLAM II tool is performed. The result shows about 30% improvement in speedup in
overall processing. In addition, we introduce new techniques for hiding communication overheads involved
in balancing. The basic idea is coalescing some phases of balancing to overlap or pipeline the transmission
of load whenever possible. They proved effective in making links busy transmitting load as soon as possible,
thus reducing the transmission time. It is shown via simulation that pipelining is powerful even in the

ARTICLE IN PRESS

$A preliminary version of this paper appears in IPPS’99.
�Corresponding author. Department of Computer Education, Busan National University of Education, 263,

Gojedong 1, Yeonjegu, Busan, 611-736, Korea.

E-mail addresses: ackyung@bnue.ac.kr (H. Rim), jjang@sogang.ac.kr (J-w Jang), ksc@arqlab1.sogang.ac.kr

(S. Kim).

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00033-3

presence of severe unevenness of initial load distribution. Combined together, proposed techniques reduce
(hide) communication overheads by 15–50% depending on initial load distribution.
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Dynamic load balancing; Hypercube multiprocessors; Communication overheads; Quantized loads; Parallel

processing environment; Uniform distribution

1. Introduction

The balancing of loads has been an important matter in parallel and distributed processing
which greatly affects the speedup in processing time. The underlying network topology or
architecture, communication overheads involving transfer of data between processors, the size of
load, the size of smallest unit of load, etc. should be carefully considered to obtain an efficient
solution to this problem. From the viewpoint of balancing load among processors, most of the
real-world processing loads can be classified into one of the following three categories.

* divisible in arbitrary sizes,
* divisible in multiples of a fixed size (quantum),
* indivisible.

Great part of real-world load falls into the second category, which we call quantized loads.
Examples include matrix multiplication and transform. However, many previous balancing
methods fail to address the effect of quantized loads on their balancing performance. In this
paper, we consider dynamic load balancing based on the dimension exchange method (DEM) on
hypercube multiprocessor (or multicomputer) with emphasis on quantized loads [3]. In dynamic
load balancing, load is balanced in the middle of execution to suit the balancing need for
applications in which load can be unexpectedly generated and destroyed in the course of
execution. Applications such as partial differential equation solvers using adaptively generated
grids or data fusion and tracking problems are good examples [2,4].
In the DEM method, load balancing happens in one dimension at a time, where a dimension

corresponds to some subset of all pairs of directly connected processors. The result is an equal
distribution of load between every pair of processors in the subset. Every dimension takes its turn,
until some conditions are satisfied [7]. Specifically in a hypercube of N processors, balancing is
performed in logN phases. In phase i; a subset consists of directly connected pairs of processors
such that the binary representation of the processor id’s in a pair differs only in ith bit position.
The DEM method for balancing quantized loads on hypercube of size N may lead to difference

as large as logN in assigned loads after balancing. The balancing is performed between two
processors in such a way that the processor with larger load sends part of its load to the other
processor so that they have as equal load as possible. As the size of hypercube grows, the
maximum difference of logN will also grow, which in turn increases the processing time.
In this paper we propose a new method which reduces the maximum difference by half to

J1
2
logNn: The basic idea of our method is to reduce the instances in which total number of

quantized loads from a pair of processors in a balancing phase is odd. The method is proved and
confirmed by enumerating all possible cases for hypercubes of limited sizes using a computer. To

ARTICLE IN PRESS

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–252

estimate the accumulated effect of many balancing instances under real-world parallel processing
environment, a simulation on a hypercube multicomputer using SLAM II tool is performed. The
result shows about 30% improvement in speedup which results from reduced processing time,
which in turn results from reduced nonuniformity.
In addition, we introduce new techniques for hiding communication overheads involved in

balancing. We develop a technique to overlap transmissions in different phases. It turned out to
be effective, resulting in up to 25% reduction (hiding) depending on initial load distribution.
However, the overlapping fails when load is severely imbalanced. As an extreme example,

consider the case where all the initial load resides in a processor P out of 2N processors.
Transmission on other links than the one connecting P cannot be initiated until enough load
arrives from P: To remedy this, we employ pipelining which forwards a unit as soon as it arrives.
This accelerates diffusion of load from heavily loaded processors to processors with scanty load.
Pipelining combined with overlapping is shown to reduce (hide) communication overheads by as
much as 50%, again depending on initial load distribution.
The rest of the paper is organized as follows. The DEM method is analyzed for its performance

on quantized loads in Section 2. Our method called odd even method (OEM) is presented in
Section 3 and simulation results are presented in Section 4. Section 5 compares OEM method
against CWA which collects global load information for uniform balancing in terms of
communication overheads. Section 7 concludes this paper.

2. The dimension exchange method (DEM) for load balancing

In this section, we provide a brief explanation of the DEM method and show that a direct
application of the DEM method on quantized loads in a hypercube of size N may result in
nonuniform distribution with difference as large as logN [1]. Compared with uniform distribution
(difference ¼ 0 or 1), this nonuniform distribution will increase the processing time by logN units.
In the next section, we propose a new method which reduces the maximum difference on

balancing to J1
2
logNn for quantized loads. We start with the definition of the balancing problems

on a hypercube.

Assume we have an d-dimensional hypercube of N processors, where N ¼ 2d : Let Pk (k is called
processor id) and Wk;i denote the kth processor and the load assigned to the processor Pk before

balancing phase i; where k ¼ 0; 1; 2;y;N � 1 and i ¼ 0; 1; 2;y; logN � 1: Wk;i is a nonnegative

integer representing the number of quantum loads. Wk;log N represents the load on Pk after

completion of balancing. Fig. 1 shows a hypercube of 8 processors with binary representation of
the processor id.
In the DEMmethod, balancing is performed in log N phases. In phase i; balancing is performed

along dimension i; where i ¼ 0; 1; 2;y; logN � 1: For j; k ¼ 0; 1; 2;y;N � 1; balancing is
performed between Pk and Pj where the binary representation of k and j differs only in the ith bit

position. For a hypercube of 32 processors, in phase 0, balancing is performed between P0 and P1;
P2 and P3; P4 and P5;y;P30 and P31: In phase 1, balancing is performed between P0 and P2; P1

and P3; P4 and P6;y;P29 and P31: Continuing in this way, balancing is performed between P0

and P16; P1 and P17; P2 and P18;y;P15 and P31 in phase 4.

ARTICLE IN PRESS

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 3

In the DEM method, balancing is performed between two processors in such a way that the
processor with larger load sends part of its load to the other processor so that they have as equal
load as possible. If the load is infinitely divisible, each processor can always take exactly the same
amount of load. For example, if P0 and P2 have 7 and 14 units of load before phase 1, P0 and P2

will both have 10.5 units of load after balancing in phase 1. The load distribution will be uniform
after logN phases if the job is infinitely divisible. But this is not a practical assumption regarding
reality in job distribution. It is more practical to assume that the job is divisible in a fixed quantum
size and thus Wk;i should be a nonnegative integer for all k; i: Since P2 has larger load (14) before

balancing than that of P0 (7), P2 sends 3 units to P0; which results in W0;2 ¼ 10 and W2;2 ¼ 11:
Balancing on a hypercube using the original DEM can be described as follows:

The original DEM

For i ¼ 0 to logN � 1 do

For all pairs of processors Pk and Pj; where j ¼ k"2i do in parallel

if Wk;iXWj;i then

Wk;iþ1 ¼ JðWk;i þ Wj;iÞ=2n
Wj;iþ1 ¼ IðWk;i þ Wj;iÞ=2m

else
Wk;iþ1 ¼ IðWk;i þ Wj;iÞ=2m
Wj;iþ1 ¼ JðWk;i þ Wj;iÞ=2n

end if
end do in parallel

Fig. 2 illustrates an example of balancing on a hypercube of 8 processors using the original
DEM method. The direction of the arrows represents the dimension along which balancing is
performed.

2.1. The worst case in the original DEM method for quantized loads

One major problem of the original DEM method, when directly applied to quantized loads, is
as follows. A balancing phase between two neighboring processors may cause one unit of

ARTICLE IN PRESS

Fig. 1. A hypercube of 8 processors with the binary representation of the processor id.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–254

difference if the sum of the loads from the two processors is not an even number. If Pk has 14 units
and Pj has 21, then after the balancing, Pk will have 17 and Pj will have 18. This difference can be

accumulated to result in the difference of logN after the logN phases.
Fig. 3 illustrates one of the worst cases for balancing quantized loads on a hypercube of 16

processors. The arrows represent the dimensions along which balancing is performed. One can
note that the DEM method will not change the number of quantized loads on any processor all
through the logN (4 in this example) phases in this particular example. The processor with the
smallest load has a units, while the processor with the largest load has a þ 4 units. The a can be
any nonnegative integer. If we put a þ 1 in place of a; we have another hypercube of 16 processors
in which there exists also a maximum difference of 4. If we combine the two hypercubes to form a
hypercube of 32 processors, the resulting hypercube will have the difference as large as 5.

Induction using the size of hypercubes from 16, 32 to 2d leads us to the proof that balancing using
the DEM method on a hypercube of N processors may result in the difference as large as logN:
The difference after the balancing affects the processing time before another balancing is

initiated. If the load is distributed as in Fig. 2 after balancing and there is no more balancing until
the load is complete, then the processing time will depend on the processor holding the load of

ARTICLE IN PRESS

Fig. 2. Balancing of quantized loads on a hypercube of 8 processors using the original DEM method.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 5

a þ 4 units. If one quantum of loads takes one unit of time, then the processor with the largest
load will finish its assigned load in a þ 4 time units, while the processor with the smallest load will
finish in a time units. Since the whole load is complete only after all the processors finish their
assigned load, the processor with the largest load will determine the processing time for the
hypercube. If the size of hypercube is N; the processor with the largest load will finish in a þ logN

time. Thus, the impact of the maximum difference on the processing time depends on the ratio
between a and logN: If a is not large compared with logN; the effect of the maximum difference
cannot be ignored. As the size of hypercube grows, the maximum difference of logN will also
grow. If balancing is initiated many times during the processing of the whole load, the effect of the
maximum difference will be accumulated to increase the processing time. Later we will show from
simulation how much the maximum increases the processing time, when accumulated. In the
following section, we propose a new method which reduces the maximum difference by half.

3. OEM for balancing quantized loads

In this section, we present a new method called odd even method (OEM) which improves the
original DEM method especially for balancing quantized loads in hypercubes. The basic idea of
OEM is to reduce the instances in which total number of quantized loads from two neighboring
processors participating in a balancing phase is odd. If the total number is odd, then one
processor should have one more quantum of load, which results in difference of one unit after the
balancing phase. If the total number is odd again in the next balancing phase, it is possible that
the difference is incremented to two. Phases 0 and 1 in Fig. 2 illustrates this case. In OEM, we
devised a scheme which prevents the difference from being incremented on every balancing phase.
This is made possible by changing the way the load is divided between the two processors when
the sum of quantized loads from two neighboring processors is odd. The following pseudo-code
describes OEM:

Odd even method

For i ¼ 0 to logN � 1 do

ARTICLE IN PRESS

Fig. 3. Balancing of quantized loads on a hypercube of 8 processors using the original DEM method: a worst case.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–256

For all pairs of processors Pk and Pj; where j ¼ k"2i do in parallel

if Wk;i þ Wj;i ¼ 2m þ 1 and m is

an odd integer then
Wk;iþ1 ¼ m

Wj;iþ1 ¼ m þ 1

else if Wk;i þ Wj;i ¼ 2m þ 1 and m is

an even integer then
Wk;iþ1 ¼ m þ 1

Wj;iþ1 ¼ m

else
Wk;iþ1 ¼ m

Wj;iþ1 ¼ m

end if
end if

end do in parallel

For example, if P6 (binary representation: 110) and P7 (binary representation: 111) have 4 and 7
quanta of loads before balancing phase 0 (W6;0 ¼ 4; W7;0 ¼ 7), then P6; P7 will have 5, 6 units of

load after balancing phase 0 (W6;1 ¼ 5; W7;1 ¼ 6). In this way, we increase the probability that

loads of same type (odd or even) meet for balancing in the next phase. To see why, consider the
two subcubes, 0-cube and 1-cube, where all the processors in the 0-cube (l-cube) have the ith bit of
the binary representation of the processor id equal to 0(1). The set of processors belonging to 0-
cube (1-cube) will change as i goes from 0 to logN � 1: Note that two processors which belong to
the same subcube (0-cube or 1-cube) in phase i will meet for balancing in phase i þ 1: Therefore if
we route loads of same type (odd or even) to same subcube during balancing in phase i; it
increases the probability that loads of same type meet for balancing in phase i þ 1: Furthermore,
in OEM it is guaranteed that the maximum difference in a balanced subcube is not incremented in

immediate succession. Here a balanced subcube after phase i consists of 2iþ1 processors whose
binary representation of their id’s differ only in the i þ 1 consecutive least significant bits. For
example, P0;P1;P2;P3 form a balanced subcube after phase 1. When the size of a balanced
subcube reaches the size of the hypercube, the balancing is complete. The maximum difference in
a balanced subcube equals the maximum load minus the minimum load in the subcube. In the
DEMmethod, the maximum difference may be incremented on each phase leading to a worst case
of logN:
However, in OEM, the difference may not be incremented in immediate succession. If the

maximum difference in a balanced subcube is incremented in phase i; the maximum difference in a
balanced subcube in phase i þ 1 containing the half-size subcube is not incremented. To verify
this, consider Figs. 4 and 5 where two representative cases incrementing difference for OEM are
illustrated.
We prove the correctness of the OEM algorithm as in Theorem 1.

Theorem 1. The difference in the units of load after balancing using the OEM algorithm is no more

than Jlog N
2 n; where N is the number of nodes in the hypercube.

ARTICLE IN PRESS

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 7

Proof. First we prove for N ¼ 4; and apply induction to complete the proof.

1. ðN ¼ 4Þ Initially, four nodes P0; P1; P2; and P3 have W0;0; W1;0; W2;0; and W3;0 units of

load, respectively. We identify six different cases.
* Case I: W0;0 þ W1;0 ¼ 2m þ 1; for some odd m and W2;0 þ W3;0 ¼ 2l þ 1; for some odd l:

After balancing phase 0, W0;1 ¼ m; W1;1 ¼ m þ 1 and W2;1 ¼ l; W3;1 ¼ l þ 1: After

balancing phase 1, W0;2 ¼ mþl
2
; W1;2 ¼ mþl

2
þ 1 and W2;2 ¼ mþl

2
; W3;2 ¼ mþl

2
þ 1: Note that

m þ l is divisible by 2 and the difference in the number of units assigned to all the nodes is

no more than 1 which is Jlog 4
2
n:

* Case II: W0;0 þ W1;0 ¼ 2m þ 1; for some even m and W2;0 þ W3;0 ¼ 2l þ 1; for some odd l:
After balancing phase 0, W0;1 ¼ m þ 1; W1;1 ¼ m and W2;1 ¼ l; W3;1 ¼ l þ 1: After

balancing phase 1, W0;2 ¼ mþlþ1
2

; W1;2 ¼ mþlþ1
2

and W2;2 ¼ mþlþ1
2

; W3;2 ¼ mþlþ1
2

: Note that

m þ l þ 1 is divisible by 2 and the maximum difference in the number of units assigned to
all the nodes is 0.

* Case III: W0;0 þ W1;0 ¼ 2m þ 1; for some odd m and W2;0 þ W3;0 ¼ 2l þ 1; for some even
l: This can be similarly proved as in the proof for case II.

ARTICLE IN PRESS

Fig. 4. Balancing of quantized loads on a hypercube of 8 processors using OEM in worst case of DEMmethod (Fig. 2).

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–258

* Case IV: W0;0 þ W1;0 ¼ 2m þ 1; for some even m and W2;0 þ W3;0 ¼ 2l þ 1; for some even
l: After balancing phase 0, W0;1 ¼ m þ 1; W1;1 ¼ m and W2;1 ¼ l þ 1; W3;1 ¼ l: After

balancing phase 1, W0;2 ¼ mþl
2

þ 1; W1;2 ¼ mþl
2

and W2;2 ¼ mþl
2

þ 1; W3;2 ¼ mþl
2
: Note that

m þ l is divisible by 2 and the difference in the number of units assigned to all the nodes is

no more than 1 which is Jlog 4
2 n:

* Case V: W0;0 þ W1;0 ¼ 2m; for some m and W2;0 þ W3;0 ¼ 2l þ 1; for some l: After

balancing phase 0, W0;1 ¼ m; W1;1 ¼ m and W2;1 ¼ l þ 1; W3;1 ¼ l for even l or W2;1 ¼ l;
W3;1 ¼ l þ 1 for odd l: If W0;1 þ W2;1 is m þ l þ 1 then W1;1 þ W3;1 is m þ l; or vice versa.
Since either m þ l þ 1 or m þ l is divisible by 2, the maximum different in the number of
assigned units of load after balancing phase 1 cannot be greater than 1.

* Case VI: W0;0 þ W1;0 ¼ 2m þ 1; for some m and W2;0 þ W3;0 ¼ 2l; for some l: This can
proved similarly as for case V.

2. (Induction: If it is true for N ¼ 22k; then it is true for N ¼ 22ðkþ1Þ:) The size of subcubes on
which load balancing is complete is doubled after each balancing phase. For example, after

balancing phase 1, the load balancing in each subcube of size 22 is complete. In two consecutive
balancing phases, 4 nodes from 4 different subcubes exchange load among themselves. Let

ARTICLE IN PRESS

Fig. 5. Balancing of quantized loads on a hypercube of 8 processors using OEM.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 9

a; b; c; and d represent the loads of the four such nodes from subcubes of size 22k before
balancing among themselves is performed. Let a0; b0; c0; and d 0 represent loads after the two
consecutive balancing phases among themselves. Let a; b; g; and d represent the loads of the

four nodes which belong to the same subcube as a; b; c; and d; respectively. Let a0; b0; g0; and
d0 represent loads after the two consecutive balancing phases among themselves. After the

balancing, a0; b0; c0; d 0; a0; b0; g0; and d0 belong to the same subcube of size 22ðkþ1Þ: Clearly
we have Eqs. (1) and (2). Since a and a represent the loads from the same subcube, a � apk

from the above assumption that the maximum difference in the units of load in a balanced

subcube of size 22k is no more than Jlog 22k

2
n ¼ k: The same is true for b and b; and so on:

ða þ b þ c þ dÞ � ðaþ bþ gþ dÞp4k; ð1Þ

ða0 þ b0 þ c0 þ d 0Þ � ða0 þ b0 þ g0 þ d0Þp4k: ð2Þ
We prove by contradiction that it is impossible for any node in the subcube can have loads
larger by more than k þ 1 than any other node in the subcube. Without loss of generality,

assume a0 and d0 represent the maximum and minimum load, respectively. Assume as a way of
contradiction Eq. (3) is true.

a0 � d0Xk þ 2: ð3Þ
From Eqs. (2) and (3), we have Eq. (4).

ðb0 þ c0 þ d 0Þ � ða0 þ b0 þ g0Þp3k � 2: ð4Þ
From the above proof for N ¼ 4 and Eq. (3), we have Eqs. (5) and (6).

b0; c0; d 0
Xa0 � 1Xd0 þ k þ 1; ð5Þ

a0;b0; g0pd0 þ 1: ð6Þ
From Eqs. (5) and (6), we have equation

ðb0 þ c0 þ d 0Þ � ða0 þ b0 þ g0ÞX3k: ð7Þ
From Eqs. (4) and (7), we have contradiction! Thus, the difference in the units of load among

the nodes belong to the subcube of size 22ðkþ1Þ is no greater than k þ 1:
3. From the base for N ¼ 4 proved in 1 and the induction proved in 2, the proof follows. &

3.1. The worst case in the OEM for quantized loads

Even though using OEM the maximum difference in a balanced subcube is not incremented in
each phase, we found that it is possible for the maximum difference to be incremented again in
every other phase. Fig. 6 illustrates one worst case of load distribution before balancing. This
combined with Theorem 1 leads us to the conclusion that, in the worst case, OEM will produce

the maximum difference of exactly J1
2
logNn: Therefore, the maximum difference in our scheme

is only about half of the maximum difference in the original DEM when applied to the quantized
loads. In the next section, our proof is ascertained by simulation with random loads on

ARTICLE IN PRESS

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2510

hypercubes of sizes up to 64. Further we will show how the maximum differences resulting from
repeated balancing affect the total processing time. The SLAM II simulation tool is employed to
show how our scheme performs better in a practical sense [1].

4. The simulation of OEM

Simulation is performed to satisfy two purposes. First is to verify Theorem 1 that the maximum

difference in the worst case for OEM does not exceed J1
2
logNn: We enumerated all possible

distribution using the numbers in the range as initial loads on processors. Since the maximum
difference basically results from various combination of load types (odd or even), simulation can
represent all possible cases for large range of numbers on large hypercubes. Table 1 shows the
number of combination which produce certain maximum differences. As expected, OEM has 0

combinations that produce the maximum difference exceeding J1
2
logNn: The second and more

practical purpose is to show that OEM performs better especially on quantized loads than the
DEM method.
In addition to the above enumeration of all possible combinations of quantized loads for some

restricted range of numbers, we performed a simulation using a discrete-event-based model. The
purpose of this simulation is to estimate how the reduced maximum difference of OEM will affect
the load balancing performance such as average queue length and speedup in processing time.
SLAM II is used as a simulation tool [1]. Following parameters are used for simulation [6]:

* The number of processors in a hypercube: 8, 16, 32, 64.
* Architecture: loosely coupled multicomputer.
* Number of processes (l) generated in each processor: 1000l; 5000l:
* Distribution of process arrival: poisson distribution.

ARTICLE IN PRESS

Fig. 6. Balancing of quantized loads on a hypercube of 32 processors using OEM: a worst case.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 11

* Service time: exponential distribution.
* Run time unit: 10 runs, 1,000,000 time unit, event driven.
* Threshold for overload: 50–60% CPU utilization.
* Scheduling for loads in waiting queue: FIFO.
* No change in load distribution during balancing.

Figs. 7 and 8 show average of maximum differences after balancing for 1000l; 5000l;
respectively. The average is taken over many balancing instances which happened during the
1,000,000 time units for the event-driven simulation. The maximum difference is directly related to
the maximum of queue lengths in the hypercube multicomputer. Thus, the smaller the average is,
the more uniform the load distribution is, which leads to reduced processing time. Comparison of
the OEM against the DEM shows 30% improvement. Fig. 9 shows improvement of OEM in
speedup over the DEM method. It shows about 30% improvement. The comparison also shows
that improvement in speedup tends to grow for larger hypercube. This is as we expected. Since the

processing time after balancing is a þ logN for the DEM method and a þ J1
2
logNn for the

OEM, when a is the minimum load after balancing which is assumed to take a time units to finish.
The OEM will take much less time for larger N:

5. Comparison of proposed OEM method with the CWA algorithm

In this section, we are going to compare OEM with known Cube Walking Algorithm (CWA)
algorithm in terms of communication overheads. A brief explanation of CWA [5] is provided for

ARTICLE IN PRESS

Table 1

The number of maximum difference after balancing

8 Processors 16 Processors

DEM OEM DEM

diff ¼ 0 50,438 87,034 148,226

diff ¼ 1 819,747 925,739 17,593,176

diff ¼ 2 211,170 68,802 12,502,375

diff ¼ 3 220 0 100,973

diffX4 0 0 77,005

16 Processors 32 Processors

OEM DEM OEM

diff ¼ 0 476,485 55,412 889,092

diff ¼ 1 24,949,040 117,986,702 273,339,227

diff ¼ 2 4,996,230 220,341,830 63,571,635

diff ¼ 3 0 10,254,632 12,543,611

diffX4 0 1,704,989 0

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2512

here self-containment. The CWA collects global load information from processors, computes the
average load per processor and broadcast it to all processors before it starts balancing load among
processors. Average load per processor is computed by dividing the total number of loads in a
hypercube by the number of its processors. A processor is overloaded (underloaded) when it has
more (less) loads than the average. Balancing is recursively performed between neighboring
subcubes. At first, a d dimensional hypercube is divided into two ðd � 1Þ-dimensional subcubes of
2d�1 processors. Processor k sends part of its load to its counterpart processor (whose id is

k"2d�1) only if itself and the subcube it belongs to is overloaded. A subcube is overloaded
(underloaded) if the total number of loads in the subcube is more (less) than the average

ARTICLE IN PRESS

Fig. 8. Average of the maximum difference for 5000l:

Fig. 7. Average of the maximum difference for 1000l:

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 13

multiplied by the number of processors in the subcube. Then, a ðd � 1Þ-dimensional subcube is
divided into two ðd � 2Þ-dimensional subcubes of 2d�2 processors. Again, overloaded processors
in overloaded subcubes send load to their counterparts. This continues until the size of subcubes
reach 1.

5.1. Uniform balancing

The CWA is capable of uniform balancing after which the number of loads assigned to each
processor differs by at most one. If 86 units are to be distributed among 8 processors, 2 processors
have 10 units and the rest 6 processors has 11 units. In DEM and OEM, the difference can be as

large as logN and Jlog N
2

n; respectively. Since the expected processing time after balancing

depends on the processor with most load (assuming each processor has same available computing
power), it is desirable to minimize the load difference. However, as shown in Table 1, the number
of cases with large difference is small for DEM and even smaller for OEM.

5.2. Communication overheads for transmission of loads

In [5], task-hop is defined as a measure of the communication overheads for transmission of task
units (or loads) in balancing phases. If Tk denotes the number of loads transmitted through the
link k;

P
k Tk represents the task-hop. It is shown via simulation that the CWA outperforms the

DEM in terms of average task-hop as reported in [5]. However, if we assume that execution of
loads is held during balancing, some links are idle in some phases of balancing.
For example, all the links except those connecting nodes 000 and 010 or nodes 101 and 111 are

idle in the balancing phase 1 of Fig. 10(c). This observation leads us to another measure of
communication overheads. In each phase our new measure concerns with only the link in which
the maximum number of units are transmitted. Transmission time in other links can be hidden. If

ARTICLE IN PRESS

Fig. 9. Balancing effect on speedup.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2514

Tmaxi represents the maximum transmission time in phase i;
P

i Tmaxi is our measure of

communication overheads. Tmax1 (in Fig. 10(c)) is 11 which is the maximum of 4 and 11. Tmax0

and Tmax2 are 14 and 5, respectively, which, together with Tmax1; give 30 as communication
overheads. In comparison, Fig. 11 shows transmission of loads using the OEM. Again

P
i Tmaxi

is computed. The result is 14 which is much smaller than the transmission time for CWA. If we
assume that execution is held until balancing is complete, the other links will be (most likely) idle
until the link with largest units to be transmitted finished transmission. In this case, the

P
i Tmaxi

provides better estimate of communication overheads than the task-hop. Figs. 12 and 13 show the
communication overheads using this measure for the CWA and OEM balancing methods.
Compared with CWA, the OEM exhibits reduced communication overheads by the margin of
around 10%.

5.3. Communication overheads for collection of load distribution and broadcasting

The CWA collects global load information from processors, computes the average loads per
processor and broadcast it to all processors before it starts balancing load among processors.
Since both collection of load information and broadcasting the average take logN communica-
tion steps (as described in the above) for a hypercube of N processors, the communication
overhead for collection of load distribution and broadcasting the average in the CWA method
takes 2 logN phases. The OEM neither collects global load information nor broadcasts the
average. Only the load information in the counterpart processor is used for balancing. In the first

balancing phase, processor k sends its load to its counterpart processor k"2d�1; if it has more

ARTICLE IN PRESS

Fig. 10. A running example of CWA.

Fig. 11. A running example of OEM.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 15

load than the latter. One can say that CWA balances load between subcubes while OEM balances
load between counterpart processors. The communication overheads for collection of load
information in the OEM is nothing but one communication step.

5.4. Scalability

Uniform balancing (maximum load difference is no more than one) is possible with CWA
because it utilizes global load information. The DEM and OEM uses only local load information
(only the load information in its counterpart processor). The DEM and OEM methods are more

ARTICLE IN PRESS

Fig. 13. Comparison of communication overheads for CWA and OEM: 16 processors.

Fig. 12. Comparison of communication overheads for CWA and OEM: 8 processors.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2516

scalable since collection of load information takes only Oð1Þ time while CWA takes OðlogNÞ time
for a hypercube of N processors.

5.5. Summary

Table 2 compares asymptotic behavior of our OEM against that of CWA. For arbitrarily large
N; CWA excels OEM in uniformity after balancing (maximum load difference), while OEM
outperforms CWA in scalability (collection of load information, computation time, storage). This
trade-off between the uniformity and the scalability would lead one to design some hybrid scheme
by combining OEM and CWA. For example, for a hypercube of N processors, one can employ
OEM in the first logP balancing phases and apply CWA in the rest log ðN=PÞ phases. The
maximum load difference will be logP þ 1 and collection of load information takes 2 log ðN=PÞ:
P can be chosen as desired by applications or processing environment.

6. Hiding balancing overheads by overlapping and pipelining

We introduce new techniques for hiding communication overheads involved in balancing. If we
assume execution is being held during balancing, our techniques will speed up the processing by
reducing the balancing overheads. The basic idea behind our techniques is to overlap and pipeline
the transmission of load as much as possible. Assumed here is that links not involved in balancing
phases are idle and all loads are independent. Efforts are made to utilize the links which would
have been idle in known balancing algorithms such as DEM, CWA or OEM. Explanation of
techniques will be followed by simulation results.

6.1. Overlapping

First, the loads to be transmitted on each link in all the balancing phases are determined in
advance. Transmissions in different balancing phases are overlapped as long as possible. Fig. 14
illustrates transmission of loads in the original DEM method. Transmission is performed by
dimension as the name dimensional exchange method implies. When balancing is performed along
dimension 0 as illustrated in Fig. 14(b), only transmissions on links aligned with dimension 0 are
performed. Transmission on links aligned with other dimensions are held until their turn. If we
define communication overhead for transmission of loads to be

P
i Tmaxi (Tmaxi is the

ARTICLE IN PRESS

Table 2

Asymptotic behavior of the OEM and CWA

OEM (proposed) CWA

Collection of load information 1 (neighbor) 2 log N phases (global)

Additional computation 1 log N each phase

Total computation time log N log2 N

Maximum load difference J1
2
log Nn 0 or 1

Storage 1 log N

N–number of processors.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 17

maximum transmission time in balancing phases i as explained in Section 5), it would take
7Tcomm: (Assume Tcomm represents the time to move one load on a link.)
Our overlapping technique allows transmission on links aligned with different dimensions to be

overlapped except when a processor involved in overlapping should delay sending out load until it
has received enough. The following pseudo-code describes overlapping methods:

The overlapping algorithm

CurrentðPkÞ : the number of units of load in processor Pk

TogoðPkÞ : the total number of units to be transmitted from Pk to adjacent processors

TogoðPk;iÞ : the number of units to be transmitted from Pk to Pj; where j ¼ k"2i

ChangeðPkÞ : Increment to the load of Pk from adjacent processors
For i ¼ 0 to logN � 1 do
For all processors Pk do in parallel

Compute CurrentðPkÞ; TogoðPkÞ by balancing algorithm (DEM, OEM, or CWA)
For i ¼ 0 to logN � 1 do
While ð

P
k TogoðpkÞ40Þ do

For all processors Pk do in parallel

ChangeðPkÞ ¼ 0

Find maximum i such that
Pi

m¼0 TogoðPk;mÞpCurrentðPkÞ
CurrentðPkÞ ¼ CurrentðPkÞ �

Pi
m¼0 TogoðPk;mÞ

For all mpi do
ChangeðPlÞ ¼ ChangeðPlÞ þ TogoðPk;mÞ where l ¼ k"2m

TogoðPk;mÞ ¼ 0

end do in parallel
For all Processors Pk do in parallel

TogoðPkÞ ¼
Plog N�1

m¼0 TogoðPk;mÞ
CurrentðPkÞ ¼ CurrentðPkÞ þ ChangeðPkÞ

end do in parallel

end(While)

Fig. 15 shows the effect of overlapping on the same example as in Fig. 14. The effective
transmission time,

P
i Tmaxi; is reduced to 3Tcomm: For this specific example, overlapping saves

ARTICLE IN PRESS

Fig. 14. A balancing example of original DEM method.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2518

50% of transmission time. Actual saving will depend on initial distribution. Fig. 16 illustrates
transmission of loads in the original CWA method. Again transmission is performed dimension
by dimension leaving all the links aligned with other dimensions idle. The

P
i Tmaxi measure

gives 10Tcomm as transmission time and our overlapping technique reduces it to 5Tcomm as shown
in Fig. 17.
For overlapping to be applied to DEM or CWA, each processor should know in advance the

number of loads to be sent out from itself. As for CWA, this can be done as a by product of
collecting global load information taking 2 logN phases. It would take logN phases for DEM
since it should simulate logN phases of transmission without actual movement of loads.

6.2. Overlapping and pipelining

There are some cases where the above overlapping technique is not quite effective. Consider
balancing in Fig. 18 where one processor has 15 units while all other processors have only one unit
of load. Fig. 18(a) shows initial load distribution and the number of units to be sent out from each
processor. Here processor 001 is supposed to send 3 units to processor 011, but it cannot initiate
sending since it has only one unit initially. Processor 001 should wait for 7 units from processor

ARTICLE IN PRESS

Fig. 15. A balancing example of DEM with overlapping.

Fig. 16. A balancing example of original CWA method.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 19

000, which prevents overlapping. The time for transmission is 10Tcomm: Similar situations will
occur when initial load distribution is severely uneven. We introduce pipelining to achieve
speedup even in the presence of severe unevenness which nullify the effect of overlapping. The
rationale behind the pipelining is not to leave links idle whenever possible. A processor does not
wait for whole number of units but sends out a unit of load immediately as soon as it receives one.
In Fig. 19, processor 001 sends out one load of its own (labeled 0 in (b)) to processor 011 at first.
In the meantime one unit (labeled 1) arrives from processor 000 and is forwarded to processor
101. Next, a load labeled 2 arrives from processor 000 and is forwarded to processor 001.
Continuing in this way, balancing is complete after 7Tcomm with pipelining. By the time processor
000 completes sending 7 units to processor 001, all other transmission (including one from
processor 0 to processor 3) would have been finished. Note that the transmission from processor
001 to 011 is concurrently performed with the transmission from processor 000 to 001, which is
not the case in Fig. 18. This is made possible by forwarding a unit as soon as possible to increase
the utilization of links. With pipelining, more links will be busy at a time. To increase utilization
of links even further, we employ an interleaving scheme when a Processor has multiple receivers to
send load. The following pseudo-code describes overlapping and pipelining method:

ARTICLE IN PRESS

Fig. 17. A balancing example of CWA with overlapping.

Fig. 18. An example where overlapping is not so effective.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2520

The overlapping and pipelining algorithm

lastðPkÞ : The index of processor to which Pk sent out in the last
For i ¼ 0 to logN � 1 do
For all processors Pk do in parallel

Compute CurrentðPkÞ; TogoðPk;iÞ by balancing algorithm

lastðPkÞ ¼ �1 for all k

While
P

k TogoðPkÞ40 do

For all processors Pk do in parallel

If CurrentðPkÞ40 then
Find m such that TogoðPk;mÞ40 and m4lastðPkÞ
CurrentðPkÞ ¼ CurrentðPkÞ � 1
TogoðPk;mÞ ¼ TogoðPk;mÞ � 1

lastðPkÞ ¼ m (if m exits)
ChangeðPlÞ ¼ ChangeðPlÞ þ 1 where l ¼ k"2m

endif
end do in parallel
For ¼ all processors Pk do in parallel

TogoðPkÞ ¼
Plog N�1

m¼0 TogoðPk;mÞ
CurrentðPkÞ ¼ CurrentðPkÞ þ ChangeðPkÞ

end do in parallel

end (while)

In Fig. 19, processor 001 should send 3 units to processor 011 and 2 units to processor 101.
Instead of sending 3 units to processor 011 (with pipelining) and then initiate sending to processor
101, it interleaves sending to both receivers. It sends one unit to processor 011 and send the next
unit to processor 101 and so on. In bigger hypercubes, receivers may have their own receivers and
this interleaving will increase the chance of overlapping the receiver’s sending to their receivers,

ARTICLE IN PRESS

Fig. 19. An example of DEM balancing with pipelining.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 21

thus contributing to overall speedup. If one receiver should wait it implies all successive receivers
should wait and all related links should be idle.
Compared with Fig. 18, pipelining in this example saves 30% in transmission time. Pipelining

will not be quite effective if cost for setup or teardown of transmission is high, but it is a promising
technique since efforts are being made to lighten the burden of communication setup. Fig. 21
shows the effect of pipelining applied to the example shown in Fig. 20. The transmission time is
reduced from 13Tcomm to 7Tcomm:

6.3. Simulation results: overlapping and pipelining

Simulation is performed to estimate the improvement obtained from proposed techniques for
hiding balancing overheads, overlapping and pipelining. To quantify the effect of unevenness, we
define imbalance as the percent of processors which have k times more load than other processors
where k is any positive integer. Thus the smaller the imbalance the severer the unevenness is. In
this specific simulation, we repeated simulation with k having values of 30, 50, 70, 100, 400, 700,
1000 and averaged the results to estimate the communication overhead. The communication
overheads for transmission of load is normalized by the original CWA or DEM method. As seen
in Fig. 22(a), for severe uneven initial load distribution (imbalance 20%), the gap between the

ARTICLE IN PRESS

Fig. 20. An example where overlapping is not so effective.

Fig. 21. An example of CWA balancing with pipelining.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2522

ARTICLE IN PRESS

Fig. 22. Effect of overlapping and pipelining on balancing for an 8 processors hypercube with varying evenness in the

initial load distribution.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 23

ARTICLE IN PRESS

Fig. 23. Effect of overlapping and pipelining on balancing for a 16 processors hypercube with varying evenness in the

initial load distribution.

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–2524

original CWA and overlapping is small while the gap between overlapping and overlapping/
pipelining is large. For more even (imbalance 70%) initial load distribution, the gap between the
original CWA and overlapping is large while the gap between overlapping and overlapping/
pipelining is small. This confirms our expectation that the improvement by overlapping is limited
by severe uneven initial load distribution and it is remedied by the introduction of pipelining. Figs.
22(b) and (c) show the effect of overlapping and pipelining method on DEM and OEM for an 8
processors. Again, the pipelining has proven powerful for severe uneven distribution. Fig. 23
simulation results for a 16 processors, which reconfirms the results in Fig. 22.

7. Conclusion

A new method for dynamic load balancing on hypercube multiprocessors is proposed which
performs better especially on quantized loads than the well known dimension exchange method
(DEM). The maximum difference in the number of load units (quanta of load) after balancing on

a hypercube of size N is reduced from logN to J1
2
logNn: A formal proof of correctness is

provided. A simulation using the SLAM II on loosely coupled hypercube multicomputer shows
about 30% improvement in speedup for processing time. We also propose new techniques for
hiding transmission overhead for load exchange: overlapping and pipelining. They proved
effective in making links busy, thus reducing the transmission time. It is shown via simulation that
pipelining is powerful even in the presence of severe unevenness of initial load distribution which
nullify the effect of overlapping.

References

[1] A. Alan, B. Pritsker, Introduction to Simulation and SLAM II, Wiley, New York, 1986.

[2] M.J. Berger, S. Bokhari, A partitioning strategy for non-uniform problems on multiprocessors, IEEE Trans.

Comput. C-26 (1987) 570–580.

[3] G. Cybenko, Dynamic load balancing for distributed memory multiprocessor, J. Parallel Distrib. Comput. 7 (1989)

279–301.

[4] G. Cybenko, T.G. Allen, Parallel algorithms for classification and clustering, Proceedings of SPIE CAAASP, 1987.

[5] Min-You Wu, On runtime parallel scheduling for processor load balancing, IEEE Trans. Parallel Distrib. Systems 8

(2) (1997) 173–185.

[6] M.H. Willebeek-Lemair, Strategies for dynamic load balancing on highly parallel computers, IEEE Trans. Parallel

Distrib. Systems 4 (9) (1993) 979–993.

[7] C.Z. Zu, F.C.M. Lau, Analysis of the generalized dimension exchange method for dynamic load balancing,

J. Parallel Distrib. Comput. 16 (1992) 385–393.

ARTICLE IN PRESS

H. Rim et al. / Journal of Computer and System Sciences 67 (2003) 1–25 25

	A simple reduction of non-uniformity in dynamic load balancing of quantized loads on hypercube multiprocessors and hiding balan
	Introduction
	The dimension exchange method (DEM) for load balancing
	The worst case in the original DEM method for quantized loads

	OEM for balancing quantized loads
	The worst case in the OEM for quantized loads

	The simulation of OEM
	Comparison of proposed OEM method with the CWA algorithm
	Uniform balancing
	Communication overheads for transmission of loads
	Communication overheads for collection of load distribution and broadcasting
	Scalability
	Summary

	Hiding balancing overheads by overlapping and pipelining
	Overlapping
	Overlapping and pipelining
	Simulation results: overlapping and pipelining

	Conclusion
	References

