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A Fast Algorithm for Computing a
Histogram on Reconfigurable Mesh

Ju-wook Jang, Heonchul Park and Viktor K. Prasanna

Abstract — The reconfigurable mesh captures salient features
from a variety of sources, including the CAAPP, the CHiP, the
polymorphic-torus network and the bus automaton. It consists of
an array of processors interconnected by a reconfigurable bus
system. The bus system can be used to dynamically obtain various
interconnection patterns between the processors. In this paper,
we present a fast algorithm for computing the histogram of an N
x N image with & grey levels in

O(min{ﬁ +log*(N/h), N})

time on an N x N reconfigurable mesh assuming each PE has a
constant amount of local memory. This algorithm runs on the
PARBUS and MRN/LRN models. In addition, histogram modifi-
cation can be performed in ()(\/Z ) time on the same model.

A variant of our algorithm runs in

O(min{s/F +loglog(N /), N})

time on an N x N RMESH in which each PE has constant storage.
This result improves the known time and memory bounds for
histogramming on the RMESH model.

Index Items — Histogram, reconfigurable mesh, mapping,
parallel algorithm

I. INTRODUCTION

THE reconfigurable mesh has been introduced in [20]. This
parallel model of computation captures the fundamental
properties of the CHiP computer [31], mesh connected com-
puters augmented with broadcast buses [28], the bus automa-
ton [30], the polymorphic-torus network {17], and the coterie
network in the latest version of the Content Addressable Array
Paraliel Processor (CAAPP) [39]. Such an architecture has
been realized using Field Programmable Gate Arrays(FPGAs)
[35]. Many algorithms on the reconfigurable mesh are known
[1], 3], [6], [S], [17], (20}, [21], [24], [27], [29], [36], [38].
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shop [40] held at the International Parallel Processing Sympo-
sium (IPPS) summarizes recent work in this area.

Computing a histogram is a basic operation in image proc-
essing and computer vision. It can provide useful information
for segmentation and measuring the textual properties of a
digitized image. Given an N X N image with & grey level val-
ues, the histogramming problem is to compute the number of
occurrences of these values.

In [15] computing a histogram and histogram modification
are performed in

O(min{ﬁ log(N IJh ), N })

time! and in O(\ﬁ; ) time, respectively, on a restricted model of

the reconfigurable mesh (denoted RMESH) of size N X N (see
Section II for details). This result assumes that each Processing
Element (PE) in the array has O(«/ﬁ ) memory. Olariu,

Schwing and Zhang solve this problem in O(log log N) time on
a stronger model of the reconfigurable mesh (denoted
PARBUS) of size N x N, assuming h is a constant [26]. Sev-
eral architectures can compute the histogram in O(log N) time
[5], [19], assuming A is a constant. In {32] it is shown that
computing the histogram on a pyramid computer having a base
of size N X N can be performed in O(# + log N) time.
In this paper, we present an

O(min{V% +log*(N / ), N}

time algorithm? for computing the histogram of an N x N im-
age using the reconfigurable mesh of size N x N, assuming
each PE has a constant amount of memory. The reconfigurable
mesh algorithm runs on the PARBUS as well as on MRN/LRN
models. If we assume 4 to be a constant, then our algorithm
runs in 0(log' N) time. This improves the best known result
[26] by a factor of O(log log N / log" N). Our algorithm can be
modified to run in

O(min{vh +loglog(N / k), N})

(RMESH) of size N x N. Compared with the result in [15], our
algorithm improves the time complexity while using a constant
amount of storage in each PE. Wang and Chen [37] have
shown that an N X M reconfigurable mesh can simulate the
CRCW PRAM model having N PEs and M memory modules

! All logarithms in this paper are to base 2.
2log" n = min {i 20 : log™ n < 1}, where log @ n is the logarithm functic
applied / times in succession.

0162-8828/95$04.00 © 1995 IEEE
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Fig. 1. A 4 x 4 reconfigurable mesh.

without asymptotic loss in time. Note that computing the his-
togram of an N X N image cannot be performed faster than
Q(log Nfloglog N) time on a CRCW PRAM having N PEs,
since the addition of N numbers takes Q(log N/loglog N) time
on this model having N PEs [8]. Our histogramming algorithm
is an example for which the reconfigurable mesh is more pow-
erful than the CRCW PRAM model. In addition, we show that
the histogram modification can be performed in O(v/h)time on

RMESH as well as on MRN/LRN and on PARBUS models.

This paper is organized as follows. In Section II, we briefly
introduce the reconfigurable mesh architecture. In Section III,
for the sake of completeness as well as for the sake of illustra-
tion, some basic operations on the reconfigurable mesh are
discussed. Main results are contained in Section IV and con-
cluding remarks are made in Section V.

II. THE RECONFIGURABLE MESH MODEL

For the sake of completeness, we briefly define the recon-
figurable mesh model and some variants of it.

A. The Reconfigurable Mesh

The reconfigurable mesh architecture used in this paper is
based on the architecture defined in [20]. The N X N reconfig-
urable mesh consists of an N x N array of PEs connected to a
grid-shaped reconfigurable broadcast bus. A 4 x 4 reconfigur-
able mesh is shown in Fig. 1. Each PE has locally controllable
bus switches. Internal connection among the four ports (N, E,
W, and S) of a PE can be configured during the execution of
algorithms. Note that, there are 15 possible connection pat-
terns. For example, {SW, EN} represents the configuration in
which S (South) port is connected to W (West) port while N
(North) port is connected to E (East) port. Each bit of the bus
can carry one of I-signal or O-signal at any time. The switches
allow the broadcast bus to be divided into subbuses, providing
smaller reconfigurable meshes. For a given set of switch set-
tings, a subbus is a maximal connected subset of the PEs.
Other than the buses and the switches, the reconfigurable mesh
is similar to the standard 2-dimensional mesh in that has ©(N?)
area, under the assumption that PEs, switches, and a link be-

tween adjacent PEs occupy unit area in the word model of
VLSLI. In this paper, we use the exclusive write model which
allows only one PE to broadcast to a subbus shared by multi-
ple PEs at any given time. We assume that the value broadcast
consists of O(log N + log h) bits and takes ©(1) time. Also, we
assume that each PE can perform an arithmetic and logic op-
eration on O(1) words in unit time. The size of the local stor-
age in each PE is O(1)'words, where each word is ©(log N +
log k) bits. Note that this model is a variant of the standard
word model of reconfigurable mesh in the literature.

B. Related Models

After the definition of the reconfigurable mesh in [20], other
models have been defined [3], {24], [36]. These models restrict
the allowed connection patterns. The most general and the
powerful model among these is the PARBUS model [36]
which allows any combination of four-port connections in each
PE. Notice that the PARBUS model is same as our model in
Section ILA. In [3] the Reconfigurable Network (RN) model is
introduced and several algorithms on this model are derived
under the mesh restriction. This model has been denoted as
MRN in [24] and LRN in [4]. The connection patterns allowed
in the MRN/LRN model are shown in Fig. 2.

N N N N N
STy ppr @ e e v
S S S S S

{W.ENS} {NW.ES} {NWES} {N,WEs} {N.EWS}

N N N N N
L e G B
N N s S N
{N,W.ES} {EW,S,N} {SW.EN} {ES,W.N} {EW,Ns}

Fig. 2. Connection patterns allowed in MRN/LRN.

In the MRN model, the number of possible connection pat-
terns in each PE is 10. In [15] the RMESH model is intro-
duced, which does not allow {NS, EW}, {NE, SW}, and
{NW, SE} connections allowed in the MRN model. However,
the RMESH model allows {NEWS}, {NEW, S}, {NES, W},
{NWS, E}, and {N, EWS} connections. Thus, the total num-
ber of possible connection patterns in each PE of the RMESH
model is 12. This corresponds to having switches on the mesh
links only. The set of allowed connection patterns in the
RMESH models is shown in Fig. 3. Notice that the set of all
connection patterns allowed in a PE in the reconfigurable mesh
is the union of the connection patterns allowed in a PE in the
MRN and RMESH models.

The reconfigurable mesh algorithms derived in this paper
(Theorem 1) can be simulated on the MRN model of same size
without slowdown, since we only employ the connection pat-
terns shown in Fig. 2. Our reconfigurable mesh algorithm can
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Fig. 4. Two-layer RMESH model.

also be simulated by a two-layer RMESH without asymptotic
loss in time. In the two-layer RMESH, each PE has at most
five local links and the switches are located on these links. By
assigning two sets of six PEs in the two-layer RMESH to
simulate a PE in the reconfigurable mesh, as shown in Fig. 4,
the two-layer RMESH can simulate any reconfigurable mesh
algorithm without asymptotic loss in time. The PEs are num-
bered 1, 2, ---, A, B, C. For example, {NS, EW} connection
pattern in the reconfigurable mesh (as well as in the MRN) can

be simulated by {36,17CB5} connection pattern by assigning
PEs 1, 3, 5, and 6 as N, E, W, and S ports, respectively. The
{NE, SW} connection in the reconfigurable mesh can be
simulated by the {56,123} connection in the two-layer
RMESH. Thus, the two-layer RMESH can simulate any algo-
rithm on the reconfigurable mesh (and MRN) of corresponding
size without loss in time. Throughout this paper, reconfigur-
able mesh refers to the model defined in Section ILA. Lin and
Olariu define a variant of the reconfigurable mesh model de-
noted REBSIS [18]. Another variant of the model can be
found in [34].

C. Histogram Problem

The histogram problem can be defined as follows: given an
input image I(u,v) of size N X N, 0 < I(u,v) < h—1, where 0 < u,
v < N-1, for each grey level, find the number (count) of occur-
rences of the grey level in the image (i. e., for each £, 0 < ¢ <
h— 1, compute F(r) =1 {I(u,v): l(u,v)=1t}1).

One of the common operations after computing the histo-
gram of an image is histogram modification. The histogram
modification problem is to map the original grey level value of
each pixel onto a new grey level value using a given function.
The histogram modification provides a desired distribution by
approximating the histogram to improve the utilization of the
available range of grey levels and enhance the contrast of the
image.

[I. NUMBER REPRESENTATIONS AND ADDITION

In this section, we introduce several number representations
on the reconfigurable mesh and show a fast algorithm for
adding numbers on the reconfigurable mesh. These notations
and results appear in our work on sorting. These have been
included for the sake of completeness and to illustrate the fea-
tures of the reconfigurable mesh model.

A. Number Representations on the Reconfigurable Mesh

Besides the usual binary representation of numbers (using
O(log N) bits) within a PE, the input as well as the intermedi-
ate results can be represented using the I/O ports of a group of
PEs in the reconfigurable mesh. For the sake of simplicity,
assume N is a power of 2. In the following four representa-
tions, a particular I/O port of each PE (E, W, N, S) is desig-
nated to carry a 0-signal or a [-signal to represent a number.
Integer i, 0 <i < N — 1 can be represented as follows.

BIN representation: uses log n PEs to represent an integer i in
[0, n — 1]. The designated port of PE k is set to a I-signal iff
the k-th bit of the log n bit representation of i is equal to 1, 0 <
k<logn-1.

1) POS representation: uses # PEs to represent an integer i
in [0, n — 1]. The designated port of PE i carries a I-
signal and the designated ports of the rest of the PEs
carry a 0-signal.

2) 1UN representation: uses n PEs to represent an integer i



in [0, n — 1]. The designated port of PE k, 0 < k < i car-
ries a I-signal and the designated ports of the rest of the
PEs carry a 0-signal.

3) 2UN representation: uses n PEs to represent an integer i
in [0, n — 1]. The designated ports of some subset of i PEs
carry a I-signal and the designated ports of the rest of the
PEs carry a 0-signal. Note that the 2UN representation of
an integer is not unique.

Fig. 5 shows the above representations for number 3. The
presence of a I-signal at a port is represented by a dark circle.

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5
BIN(3) 1UNG3) POS(3)

Fig. 5. Four different representations of number 3.

B. Conversion between Number Representations

We will show how a given representation of an integer x in
{0,N — 1] can be converted in O(1) time into another represen-
tation:

1) > BIN(x): This can be performed on a reconfigurable
mesh of size 1 x log N. The input x is in a register in a
PE. This PE broadcasts the log N bit binary representa-
tion of x. A bitwise AND operation of x with 2’ is per-
formed in PE(0, i), 0 < i < log N — 1. If the result is
nonzero, then PE(0, i) generates a I-signal at its desig-
nated port, otherwise it generates a 0-signal.

2) BIN(x) = x: The mesh size is log N X N. Assume BIN(x)
is available in the leftmost column. For 0 i< N -1, in
parallel, the ith column generates BIN(). The leftmost
column broadcasts BIN(x) to all the columns. If BIN(x) =
BIN(i), then PE(0, i) outputs i.

3) POS(x) = 1UN(x): The mesh size is 1 X N. PE(0, x)
sends a /-signal to all the PEs to its left and a 0-signal to
all the PEs to its right. The PEs set their designated port
to the received signal.

4) 1TUN(x) — POS(x): The mesh sizeis 1 x N. For0<i<N
— 2, in parallel, PE(0, i) checks if its right neighbor PE
has a I-signal. If PE(O, I + 1) has a I-signal, then
PE(0, i) resets its I-signal.

5) POS(x) — x: The mesh size is 1 X N. There is only one
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PE (i.e., PE(0, x)) having a I-signal in the POS represen-
tation. It outputs x.

6) x — POS(x): The mesh size is 1 x N. The PE having x
broadcasts it to all the PEs. If i = x, then PE(0, i) outputs
a I-signal at the designated port, otherwise the PE out-
puts a 0-signal.

7) 2UN(x) = 1UN(x): The mesh size is log2 N X N. See
Lemma 5.

By combining the above conversion techniques, we can per-
form conversion between any given pair of representations in
O(1) time. For example, 1UN(x) — BIN(x) can be performed
on a reconfigurable mesh of size 1 x N by a sequence of con-
versions, 1UN(x) = POS(x); POS(x) = x; x — BIN(x).

All the above conversion techniques can be employed on
the MRN/LRN models of corresponding size.

C. Addition of N Numbers

Given N k-bit binary numbers, 1 < k < N, the addition
problem is to add these numbers into a (k + log N)-bit binary
number. Let the N k-bit numbers be X;, 0 <i < N — 1, such that

Nk i
X, =Y fo%,;2

and the sum of these numbers be represented by
K= X 2

In the following, we show that this problem can be solved in
O(1) time using a mesh of size N x Nk. Initially, x;; is stored in
PE(, 2jN) as shown in Fig. 6,0 <i<N -1, 0<j<k-1.

Lemma 1. Given N k-bit numbers in.the BIN representation,
1 <k <N, these numbers can be added in O(1) time on an N X
Nk reconfigurable mesh.

Proof: For the ease of explanation, we use a reconfigurable
mesh of size 2N x 2Nk. Our algorithm is based on a sequential
paper-and-pencil method shown in Fig. 7. While the
(sequential) method computes the carries sequentially, all the
least significant carries are computed simultaneously in ow
algorithm. The computation of the remaining log N most sig
nificant carries is not necessary since these bits can be ob
tained directly once (all the bits of) the kth least significar
carry is known. A carry is computed in a block of size 2N X 2.
by configuring the buses and using the number representatior
introduced in Section IILA. In each block, the buses are co
figured based on the input bits. Also, the blocks are configur
such that a cascade of k blocks can compute all the k carri
simultaneously. Each carry is output in 1UN representatic
Let 1TUN(C), 1 £j <k be the resulting carry-in at the jth le
significant bit position. The k least significant output bits (z,
<j <k~ 1) can be obtained in O(1) time using the inputs ¢
the computed carries. Note that BIN(Cy) is nothing but {z;’
formal proof including an illustration of the configuration
the buses is shown below.
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Fig. 7. Addition of N k-bit numbers for N = 8 and k = 6.

Without loss of generality, assume N is a power of 2. Output
7, 0<j<k—1+logN, can be computed as follows: <j <k +
log N — 1. BIN(C,) can be obtained from 1UN(Cy) using the
conversion techniques shown in Section IILB. A

Let, S, =zx,.'j 0<j<k-1,

=0, k<j<k-l+logh,
Cju =(S;+C;)div2, 0<j<k-2+logN, and C; =0

Then, z; = (S, +C;)mod2, 0<j<k-1+logN

The mod 2 and div 2 functions give the remainder and the
quotient, respectively, when the input number is divided by 2.
If we can compute carries, C;, for 1 <j <k, in O(1) time, the (k
+ log N) output bits can be obtained in O(1) time. Note that, 0
SC<N-1,0<j<k

° [ ]
— —_—
IUNC)) o o IUN(Cjp
L ]

(b) after
Fig. 8. Computation of Cj.1 =(C; + §) div C; =3 and §; = 2.

In our solution, blocks of size 2N x 2N compute 1UN(C;,) =
(2UN(S)) + 1UN(C)) div 2, for 0 < j < k — 1. §; is not com-
puted but is available as 2UN(S;) in the 2jN-th column. Ini-
tially, x;; is stored in PE(i,2jN),0 < isN-1,0<j<k -1
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Note that the 0/1 sequence, {x;;}, 0 < i < N — 1 stored in
PE(i,2jN) represents 2UN(S)). Fig. 8 shows an example where
TUN(C) = 1UN(3), 2UN(S;) = 2UN(3) and N = 3. Initially,
2UN(S)) (= 1 0 1 in this example) is available in PE(0, 0),
PE(1, 0), and PE(2, 0). The bit in PE(, 0) is routed to PE(0, i)
in O(1) time, O < i < 2. The configuration of the PEs for the
add S; operation depends on 2UN(S)); however, the configura-
tion is used to control the configuration of the PEs in a col-
umn. If the bit is a ‘1°, then all the PEs in its column set their
configuration to {SW, NEJ}. If the bit is a ‘0’, then the PEs set
their configuration to {EW, N, S}. Now 1UN(C)) is applied at
the W port of the leftmost column of the the block. It is easy to
verify that, ITUN(C},,) is available in the rightmost column of
the block. Cascading k such blocks, IUN(Cyy;), 0 <j <k -1,
can be computed in O(1) time. The mod 2 function can be
computed in O(1) time by configuring the mesh as in the div 2
computation. Using the carries, z;, 0 <j < k + log N —1 can be
computed in O(1) time and routed to PE(0,), 0 <j<k +log N
~1, in O(1) time. O

In [3] it was shown that the addition of N N-bit numbers can
be performed in O(log™ N) time using an N X N X N (3D) re-
configurable mesh. Compared with the design in [3], our de-
sign employs an N x N? 2-dimensional reconfigurable mesh
and also improves the time complexity to O(1). Note that the
above algorithm can be implemented on the MRN/LRN and
RMESH models as well. Also, the algorithm can be imple-
mented on a bit model of the reconfigurable mesh, in which
the word length and the bus width is O(1).

IV. AN ALGORITHM FOR COMPUTING THE HISTOGRAM

For computing the histogram of an N X N image with h grey
levels, we employ an N x N reconfigurable mesh. Throughout
this section, we assume that & < N. If h > N, the pixels can be
simply sorted in O(N) time.

Lemma 2. Computing the histogram of a h X h image with h
grey levels can be performed in O(JE) time on a h X h recon-
figurable mesh.

Proof: Partition the reconfigurable mesh into % blocks of
size Vi x v/ Using the reconfigurable mesh as a 2-MCC, sort
the grey levels within each block in O(vk ) time into a snake-
like row major order using any well known 2-MCC algorithm
(see, for example, [16]). The sort is performed simultaneously
within all the & blocks. Partition each block into at most k
connected regions corresponding to A grey level values. This
can be performed in O(1) time by each PE checking the grey
level values in its immediate neighbors in the snake-like row
major ordering. Using the indices of the beginning and the
ending PEs in each region, compute the number of PEs in each
region. This number is the histogram count of the grey level
stored in the PEs in the region. This can be done in O(1) time
simultaneously for all the regions using the reconfiguration
feature. Move the histogram counts such that the ith PE in the
row major order has the ith histogram value, 0 <i < 4 — 1. This
can be done in O{v k) time using a standard 2-MCC algorithm.

Merge the A blocks in O(JZ ) time as follows. During the ith

iteration of the merge operation, 0<i<log+/h -1, 4 blocks of
size 2'Vhx2'Jh are merged into a block of size
2 x2*'Jh. At the beginning of the ith iteration, the his-
togram data resides in ~/A /2’ leftmost columns of the block.

For 0<j sﬁ—l, the jth column of the right block is moved
2! &

and aligned over the corresponding column of the left block.
Then, the corresponding values in-the left block are added. It
takes O(v/h /2') time to merge the two right blocks with the

corresponding left blocks. (see Fig. 9(a)). Next, route +/A /2
columns in the lower left block into the upper left block and
add the corresponding counts (see Fig. 9(b)). Distribute the &

histogram values residing in the leftmost v/ /2' columns in
the upper left block into the leftmost v/ /2" columns in the

resulting block of size 2'*' & x 2"/ (see Fig. 9(c)).The total
time complexity of the merge operation is:

() Merge left and right blocks

N2 ‘/;",21'4-1

T

Before After

(c) Splitting the data in the upper left block

Fig. 9. The i-th merge operation.

In the above equation, the first term denotes the time for
routing the histogram values, the second term denotes the time
for addition, and the third term denotes the time for distribu-
tion of the histogram values. O

The above algorithm can be implemented on the MRN/LRN
model as well as on the RMESH model of size £ x h. The h
histogram counts in a block of size £ x h can be stored in a
particular column (say the leftmost column) of the block. By

(b) Merge into upper left block



JANG, PARK AND PRASANNA: FAST ALGORITHM FOR COMPUTING A HISTOGRAM ON RECONFIGURABLE MESH 103

copying the histograms into a column and adding the corre-
sponding entries, we can merge the histogram counts in the
adjacent four blocks into a block of size 24 x 2/ in O(1) time.
This implies that we can go from blocks of size h X & to blocks
of size h* X h% in O(log (h/h)) = O(log h) time. Repeating this
idea, we can merge the blocks to compute the histogram of a
block of size h* x A* in O(log k) time. If N < A, it takes O(log
(h*/h?) = O(log h) time to merge the results to obtain the his-
togram of the image of size N x N. In this case, the total time
to obtain the histogram of an N x N image is

O(\/Z +log h) = 0(\/;) . The above discussion leads to:

Lemma 3. Given an h* x h* image with h grey levels, the
histogram of the image can be computed in O(J;) time on an

h* x h* reconfigurable mesh.
Note that repeatedly merging the blocks leads to an

O(JE +log(N/h))

time solution to the histogram problem. In the following, we
further improve this bound.

Given a 0/1 sequence, b;, 0 <j < N — 1, the prefix modular k
computation is to compute, for each j,

(3 /-ob,,)modk.

We represent the outputs using the POS notation.

Lemma 4. Prefix modular k computation of a 0/1 sequence
of length N can be performed in O(1) time on a (k + 1) X 2N
reconfigurable mesh.

Proof: An input bit (say b)) is assigned to a submesh of size
(k + 1) x 2. The submesh is configured to output POS((x + b))
mod k), given POS(x mod k) as its input. By cascading N such
submeshes, we can perform prefix modular & operation in O(1)
time.

Initially, b; is stored in PE(0, 2j), 0 < j £ N - 1. The con-
figuration of PE(i, 2j), PE(i, 2j + 1), 0 < i < k is determined by
the input b, This is illustrated in Fig. 10(a) for & = 4. Now,
apply a /-signal at the W port of PE(0,0) and a 0-signal at the
W port of PE(i, 0), 1 < i < k. The signals at the E port of the
PEs in column (2j + 1),0<j <N -1, represent

! b )modk
( w=0 w)

in the POS representation (see Fig. 10(b)). O

Note that the algorithm employed in the proof of Lemma 4
is not applicable to RMESH. However, it can be used on
MRN/LRN of corresponding size.

It follows from the Chinese Remainder Theorem [2], that if
A=Bmodkfor2<k<n thenA=Bmod LCM (2x3x...x
n). Since there exists a constant ¢, such that, for all n, n 2 2,
LCM 2x3xX...xcn)>2"ifABe [0,2" - 1] and A =B
mod k, for 2 < k < cn, then A = B. Let ¢ be the constant. By
combining Lemma 4 and the above fact, we have:

Lemma 5. Given a 0/ sequence of length N in a row,
counting the number of 1’s (i.e., converting a 2UN represen-
tation of a number to its 1UN representation) can be per-
formed in O(1) time on a log2 N X N reconfigurable mesh.

Proof: Let x denote the number of 1’s in the sequence.
The input is 2UN(x). We determine x by computing x mod 2,

..‘0.. 90909
m:3 vo..éo.’..g. . ras:
,-,,«9»0000' )

(gbw) mod 4 1 2

~
w
w
=)

(b) Prefix modular 4

ion (using POS rep ion)

Fig. 10. Prefix modular & computation for k = 4.

xm0d 3, ..., x mod ¢ log N. To do this, we generate i mod 2, i
mod?3, ...,imod clog N, forO0<i<N.xmod2,xmod3, ...,
x mod Tlog N are simultaneously compared with i mod 2, i
mod3, ...,imod ¢ log N, for 0 <i <N, to find an i such that x
=imodk,2<k<clogN.

Let b, 0 <j <N - 1 be the input sequence. To simplify the
explanation, we use a ¢ “log” N x (2N + 2) reconfigurable
mesh. Partition the reconfigurable mesh into RM(k), 2<k< ¢
log N, where RM(k) is a submesh of size (k + 1) x 2N + 2)
(see Fig. 11). From Lemma 4, RM(k) can compute i mod k, 0 <
i < N (by performing prefix modular k computation on the se-
quence 0111...11 of length N + 1). POS(i mod k) is available
in the PEs in the (2i + 1) -th column of RM(k), 0 < i < N —1.
Using Lemma 4,

POS((Y, 5 b;)mod k)
can be computed by RM(k).
POS(( Y, Yoo b; modk)
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is broadcast to all the columns of RM(k). For 0 < i < N, in jth bit of the representation, 0 < j < log N — 1. Partition the

parallel, the PEs in column (2i+1) check if
POS((Y, Y= b;)modk)

j=
is equal to POS(i mod ). If so, all the PEs in the (2i + 1)-th
column generate a I-signal. Now, RM(k),2 <k < T log N are
vertically cascaded into a reconfigurable mesh. There exists a
unique ¢ such that all the PEs in column (2i + 1) of the mesh
have a I-signal. This column can be easily identified in O(1)
time. Thus, we have computed

_ N-1
x=3 5

The result can be easily converted into its 1UN representation. [J

2N+2
A RM(2)
RM(k) k+1
Z
&
8 :
RM(clog N)
Y

Fig. 11. Organization of the mesh to compute / mod k, for 0< i< N .

The following Lemma is used in the proof of the main
Theorem.

Lemma 6. Addition of N log N-bit binary numbers stored in
the PEs in a row can be performed in O(1) time on a recon-
figurable mesh of size log® N x N.

Proof: The idea is as follows. Collect the jth bit from all the
input numbers and count the number of 1’s in the collection
and multiply the count by 2, 0 < j < log N — 1. Pad the result-
ing sequence with j 0’s to the right and with (log N — j) 0’s to
the left to result in a 2log N bit number. Now, the addition of N
log N-bit numbers in [O,N — 1] reduces to addition of log N 2
logN-bit partial sums. The counting is performed using
Lemma 5 and the addition of the log N 2log N-bit partial sums
is performed using Lemma 1.

Assume that each PE in the topmost row has a logN-bit num-
ber. Represent the number x in PE(0, i) in its BIN representa-
tion using the PEs in column i such that PE(jlog® N, i) has the

mesh into submeshes of size log2 N X N. Then, each submesh
has a 0/1 sequence of length N in the PEs in its top row. Let
RM(j) denote the jth submesh, 0 <j<log N- 1. For0<j <
log N — 1, in parallel, using Lemma 5, RM(j) converts the 2UN
representation of the number in its top row into its 1UN repre-
sentation. Using the conversion techniques discussed in Sec-
tion IILB, the number is converted to its BIN representation.
In RM(j), multiply the number by 2 (by shifting it). Let
BIN(S(j)) denote the resulting 2log N-bit number in RM()).
Now, we have to add the logN 2log N-bit numbers to obtain
the final output. RM(j) stores BIN(S(j)) in the PEs in its top-
most row such that the i-bit of BIN(S(j)) is in PE(jlog’VN, 2i
logN), 0 < i < 2log N -1, 0 <j < logN — 1. Addition of
BIN(S(5)), for 0 <j <log N — 1, can be performed in O(1) time
using Lemma 1. O

Now, we are ready for the main theorem.

Theorem 1:The histogram of an N x N image with h grey
levels can be computed in

O(min{J}T +log*(N/h), N})

time on an N X N reconfigurable mesh.

Proof: Partition the mesh into disjoint blocks of size h* x
h*. Using Lemma 3, the histograms of blocks of size A* x h*
are obtained in O(vh) time simultaneously for all the blocks.
These histograms are merged in O(1) time to compute the
histogram of blocks of size 2* x 2*. To perform the merge, we
use the addition technique in Lemma 6. After log™ (N/h%) =
O(log"(N/h)) such merge steps, the histogram of the complete
image is available. .

The merge is performed as follows. First, the histograms of
blocks of size h* x h* are merged to compute the histogram of
a block of size h* x 2. Note that each block of size A* x 4* has
h histogram values. These values are stored such that the ith
PE in the leftmost column of the block has the ith histogram
count, 0 < i < h—1. The merge is performed in parallel, simul-
taneously for all the grey levels. Since there are 2*/h* histo-
grams, we need to sum up 2"/h* values for each grey level.
Note that, for each grey level, in each block of size A* x 2*, the
count does not exceed A*2*. Using Lemma 6, the addition of
the histogram counts corresponding to a particular grey level
can be performed in O(1) time on a submesh of size #* x 2".
The merge of all the & grey level counts is performed in paral-
lel using a submesh of size h* x 2". Now we have computed
the histogram of each image of size A* x 2*. Using a similar
technique, the histograms of 2%/A* blocks of size h* x 2* are
merged in O(1) time to compute the histogram of blocks of
size 2" x 2. Let T(N) be the time to compute the histogram of
an N x N image. The above discussion leads to:

7(n*)= 0(vh)

and T(N) = T(log* N) + O(1), log N > h. This leads to
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T(N) = O(vh +log*(N 1 ).

f VA >N, then using a 2-MCC sorting algorithm, sort the
sixel values to compute the histogram. This can be performed
n O(N) time [16]. Thus, we have

T(N)=O(min{VA +log*(N/h),N}). O

Theorem 1 is also applicable to the MRN/LRN model.
However, the theorem does not apply to the RMESH model
since LLemma 5 does not apply to the RMESH model. Lemma
5 plays a crucial role in achieving the log"(N/h) term in the
time complexity. Our algorithm can be modified to run in

o(min{7 +loglog(N / k), N})

time on an N X N RMESH. The histograms in I* blocks of size
! x I can be merged in O(1) time using Lemma 1 and the con-
version techniques in Section 1ILB, for / 2 h*. Recursive appli-
cation of the merge technique results in the O(log log (N/h))
term in the time complexity.

Corollary 1. Given a N x N image with h grey levels, the
histogram of the image can be computed in

O(min{\/—ﬁ +loglog N, N })

time on a N x N RMESH.

Lemma 7: Given a histogram modification table in a block
of size Jh x«Jh, the histogram modification of an N X N im-
age can be performed in O\Nh) time on an N X N reconfigur-
able mesh.

Proof: Using a sequence of row and column broadcasts,
copy the histogram modification table into each block of size
Jh x /i This can be completed in O(vh) time. Sort the pixel
data in each block into a snake-like row major order. Partition
each block into at most A connected regions, such that within
each region all the PEs have the same pixel value. Route the
data in the table such that the beginning PE of the ith region
receives the ith table entry, 0 < i < & — 1. This can be per-
formed in O(N) time using standard 2-MCC techniques. Each
beginning PE broadcasts the new value of the pixel to all the
PEs in its region. This can be performed in constant time by
configuring a broadcast bus within each region. Within each
block, the modified pixel values are moved back to the origi-
nal PEs in O(vh) time using a standard 2-MCC technique
(23]. O

Note that Lemma 7 also applies to the MRN/LRN and the
RMESH models.

V. CONCLUSION

We have improved the time bound in [26] for computing the
histogram of an N X N image with A grey levels on the recon-
figurable mesh to

O(min{v +log* (N / k), N})

time on the PARBUS and MRN/LRN models of size N x N. A
variant of our algorithm runs in

O(min{«[i?ﬂog log(N/h),N})

time on the RMESH model. This improves the time bound in
[15]. We have also reduced the amount of local storage from

0(«/; ) in {15] to O(1). The histogram modification algorithm
improves the memory requirements by a factor of 0(\/; ) in
each PE.

Our result implies that the number of 1’s ina N X N 0/1 ta-
ble can be computed in O(log” N) time on an N x N reconfig-
urable mesh.

Throughout this paper we have employed the word model of recon-
figurable mesh. The bit model of reconfigurable mesh has been intro-
duced in [13]. In this model, the bus width and the storage in each PE
are constant. The PE and the wire connecting adjacent PEs occupy unit
area. Thus, the bit model of reconfigurable mesh of size N log N X N
log N occupies the same area as the word model of reconfigurable
mesh of size N x N in which the word size is ©(log N). Among its other
features, the bit model allows bit level switch control which is not pos-
sible in the word model. In [13] it has been shown that, given an N x N
image with 4 grey levels, i < N, such that each pixel is mapped to a log
N x log N block in a natural fashion, the histogram of the image can be
computed in O(ﬁ ) time on the bit model of reconfigurable mesh of

size Nlog NxNlogN.
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